
MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

VLSI Memo No. 89-521
(V) April 1989

N,,,, DTIC
00 A Reconfigurable Arithmetic Processor M 2Q AY 2 4 i8

N James Alexander Stuart Fiske

Abstract'

r Achieving high rates of floating-point computation is one of the primary goals of many
computer designs. Many high speed floating-point datapaths have been designed in order
to address this problem. However, conventional designs often neglect the real problem in
achieving high performance floating-point: providing the necessary I/O bandwidth to keep
the high speed datapaths busy.

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a
message-passing, MIMD concurrent computer. Its datapath is designed to sustain high
rates of floating-point operations, while requiring only a fraction of the I/O bandwidth
required by a conventional floating-point datapath. The RAP incorporates on one chip
eight 4-bit serial, 64 bit floating-point arithmetic units connected by a switching network.
By sequencing the switch through different patterns, the RAP chip calculates complete
arithmetic formulas. By chaining together its arithmetic units the RAP eliminates the I/O
bandwidth associated with storing and retrieving intermediate results, and reduces the
amount of off chip data transfer

This thesis describes and evaluates the RAP architecture. It presents two important
aspects of the chip design: the control logic design, and the schematic level design of the
RAP datapath., The RAP datapath design includes the design of two 4-bit serial floating-
point units: an adder/subtracter unit and a multiplier unit. In order to use the RAP
datapath, a compiler is developed that takes as input a list of mathematical expressions,
and outputs a series of switch configurations to be used by the RAP to do the calculation.

On 23 benchmark problems, the RAP reduced both the on chip and off chip bandwidth
requirements by an average of 64%, when compared the bandwidth required by a
conventional arithmetic chip that does not exploit locality. Average floating-point
performance is 3.40 Millions of Floating-point operations per second (MFlops).I -.

Approved k: pvl: -
Dijiu L;rtod

Microsystems Massachusetts Cambrnoge Telephone
Research Center Institute 'assacnuserts l617) 253-8138
Room 39-321 of Technology 02139

Acknowledgements

Submitted to the Department of Electrical Engineering and Computer Science at MIT on
December 16, 1988 in partial fulfillment of the requirements for the Degree of Master of
Science in Electrical Engineering and Computer Science. This work was supported in part
by a scholarship from Fonds pour la Formation de Chercheurs et L'Aide a la Recherche
(Fonds FCAR). Also in part by the Defense Advanced Research Projects Agency under
contracts N00014-88-K-0738, N00014-87-K-0825, and N00014-85-K-0124 and in part by a
National Science Foundation Presidential Young Investigator Award with matching funds
from General Electric Corporation and IBM Corporation

Author Information

Fiske: Electrical Engineering and Computer Science, Room NE43-416, MIT, Cambridge,
MA 02139. (617) 253-8473.

Copyright O 1989 MIT. Memos in this series are for use inside MIT and are not considered
to be published merely by virtue of appearing in this series. This copy is for private
circulation only and may not be further copied or distributed, except for government
purposes, if the paper acknowledges U. S. Government sponsorship. References to this
work should be either to the published version, if any, or in the form "private
communication." For information about the ideas expressed herein, contact the author
directly. For information about this series, contact Microsystems Research Center, Room
39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

*a

A RECONFIGURABLE ARITHMETIC PROCESSOR

by

James Alexander Stuart Fiske

Submitted to the
Department of Electrical Engineering and Computer Science

on December 16 in partial fulfillment of
the requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science

Abstract

Achieving high rates of floating-point computation is one of the primary goals of many computer
designs. Many high speed floating-point datapaths have been designed in order to address this
problem. Howe-rer, conventional designs often neglect the real problem in achieving high perfor-
mance floating-point: providing the necessary I/O bandwidth to keep the high speed datapaths
busy.

The Reconfigurable Arithmetic Processor (RAP) is an arithmetic processing node for a message-
passing, MIMD concurrent computer. Its datapath is designed to sustain high rates of floating-point
operations, while requiring only a fraction of the I/O bandwidth required by a conventional floating-
point datapath. The RAP incorporates on one chip eight 4-bit serial, 64 bit floating-point arithmetic
units connected by a switching network. By sequencing the switch through different patterns, the
RAP chip calculates complete arithmetic formulas. By chaining together its arithmetic units the
RAP eliminates the I/O bandwidth associated with storing and retrieving intermediate results, and
reduces the amount of off chip data transfer.

This Thesis describes and evaluates the RAP architecture. It presents two important aspects of the
chip design: the control logic design, and the schematic level design of the RAP datapath. The RAP
datapath design includes the design of two 4-bit serial floating-point units: an adder/subtractor
unit and a multiplier unit. In order to use the RAP datapath, a compiler is developed that takes
as input a list of mathematical expressions, and outputs a series of switch configurations to be used
by the RAP to do the calculation.

On 23 benchmark problems, the RAP reduced both the on chip and off chip bandwidth requirements
by an average of -64%, when compared the bandwidth required by a conventional arithmetic chip
that does not exploit locality. Average floating-point performance is 3.40 Millions of Floating-point
operations per second (MFlops).

Thesi. Supe:v.sor: William J. Dally.Title: Assistant Professor of Electrical Engineering and Computer Science

Keywords: Floatine-Point, Bandwidth, Serial Arithmetic. Locality, J-Machine.

Acknowledgments

Many people contributed in many ways to the completion of this Thesis, and I would like
to thank them all whole heartedly.

First of all, thanks to my Thesis advisor Bill Daily for providing an immense amount of
knowledge, technical expertise, and guidance which was invaluable to this work. Thanks
for providing the sustained enthusiasm which helped carry me through till the end. Thanks
also for helping me increase my well-traveledness by sending me to Banff and Hawaii.

The other members the CVA group were also a great help to me. Thanks to Andrew Chien
for being the eternal skeptic, and always making me think twice about what I say. Thanks
to Scott Wills for always taking time out to help me with NS and for being such a good
humored guy. Thanks to Peter Nuth for founding the much needed "Hurting Dudes Club"
and for his faithful late night presence and conversation at the lab. Thanks to John Keen for
getting me to take sculling, and for getting me to go to surprise birthday parties. A special
thanks to the original Yogurtheads of the group: thanks to Paul Song for his friendship,
and his amusing optimism about how long things will take him to do, and to Brian Totty
for his friendship, great sense of humor, and his deep appreciation of my singing. Thanks
to all the other members of the group, new and old, including Soha Hassoun, Rich Lethin,
Jerry Larivee, and Waldemar Horwatt. I am also indebted to Petr Spacek and Josef Shaoul
for all the work that they did in designing the fixed point RAP (of course they left me to
test it which wasn't very nice of them, but I'll overlook that).

Thanks to my friends, and ultimate Yogurtheads, Carlos Noack and Adam Ciaramicoli.
Thanks for the Boston adventures we've had together, the good laughs, the good talks, and
the Yogurthead songs composed and sung.

A special thanks to my entire family, especially my parents. Thanks for providing all
the encouragement, love, and support that was necessary for me to pursue my formal
education throughout these many years. Perhaps more importantly, thanks for participating
so actively in my more informal education over the years.

Finally, and mostly, thank God! o ,, or

S Fod[-r
7 T

L -L

/ '! ,' D , , : "

.

AvJ~i L~i)CdS

To Momn and Dad

Contents

1 Introduction 7
1.1 The I/O Bandwidth Problem
1.2 The RAP .. 8

1.2.1 Performance 10
1.3 Background ... 11

1.3.1 The J-Machine 11
1.3.2 Arithmetic 11
1.3.3 Another Approach 13
1.3.4 The Scheduling Problem 14

1.4 Thesis Overview 14

2 Architecture 16
2.1 An example .. 17
2.2 Using the RAP .. 19

2.2.1 A System Perspective 19
2.2.2 Messages 21

2.3 Block Diagram .. 24
2.3.1 Arithmetic Units 26
2.3.2 Switch ... 27
2.3.3 Using the Datapath 29

2.4 Comparison to Another Approach 34
2.4.1 Parallel Arithmetic vs. Serial Arithmetic 34
2.4.2 Register File vs. Switch 39

2.5 Summary .. 41

3 RAP Simulation and Control Logic 42
3.1 Simulator Description 43

3.1.1 Simulator Organization 43
3.2 Control 44

3.2.1 Input Control 47
3.2.2 Output Control 52
3.2.3 Switch Control 2

3.2.4 Network Control 55
3.3 Summary .. 57

4 Hardware Design 58
4.1 Numbering System 59

4.1.1 Format .. 59
4.1.2 Normalized Numbers 60
4.1.3 Overflow and Underflow 61
4.1.4 Zero Representation 61

4.2 Design of a 4-bit Adder 62
4.3 Floating-Point Units 66

4.3.1 Floating-Point Adder/Subtractor 67
4.3.2 Floating-Point Multiplier 71
4.3.3 Area Estimates 76

4.4 Other Hardware Components 77
4.5 Hardware Improvements. 77
4.6 RAP Fixed-Point Prototype 80
4.7 Summary .. 85

5 3xpression. Compiler 88
5.1 The Problem 87
5.2 The Algorithm .. 88

5.2.1 An Example 89
5.2.2 Sequencing Schedules 93
5.2.3 Limiting the Search 95

5.3 Other Enhancements and other Approaches 97
5.4 Summary ... 102

6 Performance 104
6.1 Evaluation Method 105

6.1.1 Assumptions 105
6.1.2 Benchmarks 106

6.2 Bandwidth Performance 108
6.3 Floating-Point Performance 110
6.4 Limits on Performance 113

6.4.1. Limits on Bandwidth Performance 113
6.4.2 Limits on Floating-Point Performance 114

6.5 Improving Performance 115
6.5.1 Finding Better Methods 115
6.5.2 Using Different Resource Configurations 116
6.5.3 Pipelining RAPs 118
6.5.4 Reorganizing Control and Operation of the Data Path 120

6.6 Summary 122

2

7 Conclusion 124

7.1 Sum m ary . 125

7.2 Future Work ... 127

A 4-Bit Adder Simulation and Layout 129

A.1 Simulation ... 130

A.2 4-bit Adder Schematics 132
A.3 4-bit Adder Layout 158

:3

List. of Figures.

1.1 RAP Datapath 10
1.2 J-M44tine Configuration 12

2.1 4-Point FFT Datalow Graph 18
2.2 RAP Usage ... 20
2.3 Message Formats 22
2.4 RAP Black Diagam 25
2.5 Switch Coui ation. 28
2.6 Computing a Single Problem Without Pipelining 30
2.7 Computing a Sigpgle Problem Using Pipelining.. 31
2.8 Computing Multiple Instanceg of the Same Problem Using Pipelining. . .. 32
2.9 Parallel Arithmetic Using a Register File 35
2.10 Parallel Arithmetic vs. Serial Arithmetic Efficiency 37
2.11 Register File Area vs. Switch Area 40

3.1 Input Control Flow Chart (part 1) 49
3.2 Input Control Flow Chart (part 2)50
3.3 Input Control Flow Chart (part 3) 51
3.4 Output Control Flow Chart 53
3.5 Switch Control Flow Chart 54
3.6 Network Input Control Flow Chart 55
3.7 Network Output Control Flow Chart 56

4.1 Floating-Point Format 60
4.2 General 4-bit Adder SPICE circuit 63
4.3 Manchester Carry Circuits 65
4.4 Stages of the Ripple Carry Circuitry 65
4.5 Floating-Point Adder/Subtractor Block Diagram 68
4.6 Steps in the Floating-Point Add 69
4.7 Floating-Point Multiplier Block Diagram 71
4.8 Steps in the Floating-Point Multiply 72
4.9 Mantissa Multiply Pipeline 73
4.10 Example Multiply of Two Positive Fractions 74

4.11 Simplified Multiply Cell ,
4.12 Input and Output Register Cells. 78
4.13 Switch Cross Point
4.14 R.AP Fixed-Point Prototype.
4.15 Block Diagram of the Fixed-Point RAP..... 3
4.16 Fixed Point RAP Datapath. 84

3.1 DAG for the List of Expressions (*(.+ 3 X) (+ Y X)), (* (+ Z Y) (4- Z H)),
(*(+ H2) 4). 90

3.2 DAG Schedule (part 1). 91
5.3 DAG Schedule (part 2). 92
.5.4 Tree of All Possible Schedules for a Level. 94
5.5 An Accumulation Tree 99
5.6 Accumulation Tree with Redundant Operations. 100
5.7 Eliminating Common Subexpressions. .. .*. 101

6.1 An Alternative Switch. 119

A.1 SPICE Plots for Different 4-Bit Adders. 131

List of Tables

4.1 O(erflow/Undierficw Conventions for the Add, Subtract, and Multiply Oper-
alti lm 62

4.2 4-bit Adder Delay and Are& 64
4.3 B Cal Area Estimates 76
4.4 Floating-Point Unit Area Estimate 77

6.1 Benchmarks used to Evaluate Performance 107
6.2 RAP Bandwidth Performance 109
6.3 RAP Floating-.Point Performance 111
6.4 Comparison of Actual Performance to Ideal Performance 112
6.5 Optimum # of Configurations per Method vs. Number of Input Operands . 120

tj0

Chapter 1

Introduction

Let us go singing as far as we go: the road will be less tedious.

VIRGIL, in Eclogues, IX, 1.64

What ezperience and history teach is this - that people
and governments never have learned anything from 'istory,

or acted on principles deduced from it.

GEO RGE WILHELM FR.IEDR.ICH HEGEL in Philosophy of History (1832)

1.1 The I/O Bandwidth Problem

The problem iin building fast arithmetic chips is not building fast arithmetic circuits but

rather supplying the necessary I/O bandwidth. For example, a conventional 64 bit-paralel

floating-point adder or multiplier pipe computing at 20MFlops (Millions of Floating-point

operations per second) requires an I/O bandwidth of 3.SGbit/sec. This rate of I/O is very

difficult to achieve with anything less than dedicated liies and a continuous stream of data.

i = m It | m |7

CKAMT 1. INTRODUCTION

The problemr is only getting worser today it is possible to. build a. pipeilned bit-parallel

00Mlop, oating-point adder or multiplier, but be unable to exploit more than a small

faactionr of its power due to insufficient 1/0 bandwidth..

Me r/O bandrwidth problem occurs. at two different levels: off chip 1/0 and on chip

I/G. Off chip IfO is the most seere problem because of packaging limitations. Off chip

capacitances are orders of magnitude larger than on chip capacitances (10 pf compared

to 0O4) pf) which slows down the propagation of signals. Also, the number of pins on a

chip is limited due to. paysicai constraints. Although packaging technology is improving,

the inherent physical limitations prevent off chip bandwidth from achieving levels that are

possible on chip, and ways must, be found to, limit off chip I/O requirements.

On chip there can be a bandwidth problem between storage (memory and registers),

and logic circuitry. The problem is caused by high capacitance bus and memory lines which

limit the speed at which data can be moved between storage and logic. The problem is

much less severe than the off chip case since there are many mechanisms for dealing with

the problem: multiple busses, multi-ported registers and memory, and sophisticated sensing

circuitry. These approaches to solving the problem can mean a substantial increase in chip

area.

Since technology improvements are not eliminating the I/0 problem, it is important

to explore architectural solutions to both the off chip and the on chip I/0 bandwidth

bottlenecks. The architecture of the Reconfigurable Arithmetic Processor (RAP) addresses

both these problems in the case of high speed floating-point arithmetic.

1.2 The RAP

The RAP is a CMOS, 64 bit, floating-point arithmetic chip. It is designed to sustain high

rates of floating-point operations, while requiring only a fraction of the I/0 bandwidth of a

CHAPTER 1. INTRODUCTION 9

conventional arithmetic chip. To do this the RAP allows the direct calculation of complete

expressions that contain several adds, subtracts, and multiplies.

The RAP uses serial arithmetic. Bit-serial arithmetic implementations are more area

efficient than bit-parallel implementations in that they require a much smaller amount of

chip area. This area efficiency is due to the use of narrow datapaths rather than wide -

datapaths. The savings in area is not without cost: serial implementations are slower than

parallel implementations because bits must be clocked sequentially into and out of the

circuit. Results cannot "flow through" to the output as in parallel implementations.

The reduced area requirements of serial arithmetic allow several Arithmetic Units (AUs)

to be put on a single chip. Having narrow serial datapaths also allows the implementation of

an area efficient switching network that can be used to route data between AUs. Although

a single serial unit is slower than a parallel implementation, the RAP makes up for this by

exploiting the functional parallelism achieved by having several units on one chip: instead

of using a single 32MFlop bit parallel unit, eight 4MFlop bit serial units running in parallel

are used. Performance is then determined by the extent to which this parallelism can be

exploited, which in turn is dependent on the structure of the problem.

The reconfigurable RAP datapath shown in Figure 1.1 consists of a number of 4-bit serial

AUs, a switch, input registers, and output registers. Data is first shifted through the switch

and gets routed to the appropriate AUs. Intermediate results are fed back into the switch

which is reconfigured to allow the next stage of the computation to take place. When the

computation is complete the results are sent to the output registers. A compiler has been

written that compiles mathematical expressions into the successive switch configurations

needed to perform the calculation.

At a higher level, the RAP has a message passing interface that allows it to be integrated

into the J-Machine8J, a message passing concurrent computer system. A RAP is sent

messages that define equations as a sequence of switch configurations. which are stored in

CHAPTERZ-1. LYTRQDUCTION. 10

REGISTERS. SWITCH ARITHMETIC OU GTUT

Figure- Li:. RA2 Datapath.

locak meuay. Subaequent mesaagpea use these. stored configurations to evaluate the equation.

Mfehanism& at* included that allow the, pipeiining, of several RAPs so that the output of

one- RAR can, be used, as.. the input, to -another.

TWO seriak ftoa~in&qiat. AU&, one an, adr/subtzactor, the other a multiplier, were de-

*ad;ei "a lha a&~ eXW44tedQ~a e~fra~ . of 1.57A~lpspa. In the current design, there is a

lug* time &aj betwqm whwhz twq sw;cessive Rr0bIPm can enter the AUs. Straightforward

modefications to, tbA AV desip wuldi elimi*nate these. wasted clock cycles and allow better

pipeining o(roblemz. hia wokld increase the AU performance to 4.7OMFlops. When used

in the RAP, som~e oxxa timeo is nesoed to change switch configurations, so that the AUs

WORMd bA'V. 4 VeaX PWXO~qcO Of 49E4JPA* T11,s gk~tR a* peak performance of 32MFlops

fez, a RAP costaiz~ag four add/subtract units and four multiply units.

The averae floA4*-pont perfor;naaic@ achi-ee for 23 benchmark problems that were

simulated is 3,4OMFlops or 11% of the peak performance. More importantly, the off chip

1/0 bandwidth requied, tQ sus~~it tl~e computation rate is reduced on average by 64%.

1'Ykrougiiout this thesis, laveraqe-' refers to the harmonic mean whenever the quantity in question is a
Wrate' such as a floating-point rate or a b~andwidth rate.

CHAPTER 1. INTRODUCTION 11

This is when compared to the bandwidth required by a conventional chip where no locality

is exploited. When compared to a conventional chip augmented by a register file used to

keep intermediate results from going off chip, the on chip I/O bandwidth required between

storage and logic in the RAP is also reduced by 64%. The RAP approach also results in a

more area efficient implementation.

1.3 Background

1.3.1 The J-Machine

The RAP chip is being designed as a part of the J-Machine [8], a message passing concur-

rent computer system under development at MIT. This system is based on a mesh routing

network that connects a collection of processing nodes, and uses wormhole routing tech-

niques to reduce message latency to approximately 2 js for a 200 bit message on a 4K node

network [9]. Each single-chip node includes both the network communication hardware

and a processor. The RAP chip is one node type that can fit into the network "slots", as

shown in Figure 1.2. It includes the necessary control mechanisms and message handling

capabilities to fit into the system. The RAP borrows several ideas that were first developed

in the Message Driven Processor (MDP) [7], the general purpose computing node for the

system. In particular the RAP executes messages directly, reducing message interpretation

overhead, and it makes use of the same network communication scheme [6, 9].

1.3.2 Arithmetic

Many computer applications in such areas as analog circuit simulation, N-body problems.

finite element analysis, digital signal processing, and three dimensional graphics require

large amounts of floating-point computing power [321. To satisfy this demand, many spe-

~iAP'E1.LNXDuJcTioN 12

FiDP 12 -aha Configuration'R

CHAPTER 1. 1NTRODUCTION 13

cial purpose board level and chip level arithmetic processors have been built [14. 26, 4].

Approaches range from math coprocessors that act as extensions to a main processor (e.g.

the Intel 80387 and the Motorola MC68881) to dedicated math processors designed for

specific applications. In most cases these processors are implemented using a bit-parallel

approach. Because of this approach, implementations are expensive in terms of silicon area

and only one or two floating-point units can be put on a single chip.

The area efficiency of serial arithmetic allows several floating-point units to be put on a

single chip. Serial arithmetic has been used in many Digital Signal Processing applications

[30, 24]. The idea of exploiting functional parallelism using serial fixed-point arithmetic

has been used in this area [25]. Many algorithm alternatives exist for serial arithmetic

implementation [5, 23, 16, 29, 35].

1.3.3 Another Approach

Another approach to the I/O bandwidth problem is to use an on chip register file to store

operands and intermediate results (4]. The register file serves the same function as a switch,

selecting data to be input to each function unit during each pipeline time slot. The register

file performs this switching both by storing data to move it to a different time slot, and by

multiplexing many registers into each register file port. The serial switch in the RAP elim-

inates the need for storage and simplifies the multiplexing. The resulting switch is smaller,

both because it is serial and because it contains no storage. The switch is also simpler

to control: switch configurations are changed each word time (a word time corresponds to

the time it takes to clock a 64 bit operand serially through the switch), while register file

addresses must be changed each clock cycle. The slow control signals allows the switch to

operate faster than a comparable register file. A more detailed comparison of the register

file approach and the approach used in the RAP is found in Chapter 2.

CRFAPTER 1. 1IVTRODUCTION 14

1.3.4- The Scheduling Problern

In the RAP the operations in an expression must-be scheduled on the functional units. This

scheduiing, is done subject to- a, number of constraints, including. the number of functionai

umitsavailable-and the.connectivity of the switch. The scheduling of partially ordered tasks

omlimita& andf shared. resources has been, studied in different. contexts including operations

reseazch-,. microprogramming, and parallel computiug. In particular, compilers for VLIW

grocessors 'i0, 211 that scheduieoperationson multiple functional.units, deal with a problem

veryt similar to- the scheduling.problem on the. RAP. The approach, used in these compilers is

one ca&& list scheduling which involves keeping a. list of schedulable operations, and using

heuristics to. help in determining which operations should be scheduled first.

The-technique used toschedule expressions on the RAP involves a depth first search that

uses various tree search pruning techniques such as branch-and-bound [33, 37]. Heuristics

similar to thee used in list scheduling are used to determine which operiations should be

scheduled first.

1.4 Thesis Overview

This Thesis describes the RAP architecture, presents the design of the logic required to

control the RAP as well as the circuit design of the RAP datapath, describes an expression

compiler which maps expressions onto the RAP switch, and evaluates the RAP performance.

Chapter 2 describes the RAP architecture. How the RAP reduces the off chip bandwidth

requirements to do floating-point computations is illustrated with an example. How the

AP works and how it is used and controlled with messages is discussed. The RAP's block

diapram is described in detail, and the architecture is compared to the use of a multi-ported

register file to exploit locality and reduce bandwidth requirements.

CHAPTER 1. INTRODUCTION 15

Chapters 3 and 4 deal with two of the most important aspects of the chip design: the

design of the control logic and the design of the datapath hardware. In Chapter 3 a RAP

simulator is used to design and verify the RAP control logic. This simulator is also used

in Chapter 6 to help evaluate performance. Chapter 4 presents the hardware design of the

RAP datapath, in particular the design of the floating-point functional units and the design

of the switch, which are the most critical components in determining the performance of

the RAP.

In order to be able to use the RAP arithmetic expressions or sets of expressions must

be mapped into a series of RAP switch configurations. A compiler which performs this

mapping is described in chapter 5.

Chapter 6 presents a performance evaluation of the RAP. The expression compiler of

Chapter 5 is used to map a number of benchmarks onto the RAP and performance is

evaluated in terms of the bandwidth required, and in terms of floating-point rates achieved.

The factors that limit performance are discussed, and various schemes that can be used to

improve performance are examined.

Finally, the results of the thesis are summarized and a few open research issues are

discussed in chapter 7.

Chapter 2

Architecture

Experience- has shown that to be true which Appius says in
hir verses that every man is the architect of his own fortune.

SXAUST, in Speech to Caesar on the State, sec. I

Do all the good you can,
By all the means you can,

In all the ways you can,
In all the places you can,
At all the times you can,

To all the people you can,
As long as ever you can.

JoHN WESLZY, John Wesley's Rule

Ih. thit. chapter a, complete- description of the- RAP is given. In section 2.1 an example

problem. is. shown which illustrates, the RAP operation and how it reduces bandwidth re-

quirementm. Section 2.2 describes the different ways of using the RAP within a J-Machine

ystem, and, describes the 'messages used to control the RAP. Section 2.3 gives a detailed

locik diagram: ofthe RAP: FinaLly. section 2.4 compares -he tpproach used in -he 3-A.P 'o

AI

CHAPTER 2. ARCHITECTURE 17

reduce off chip bandwidth to the approach used in more conventional design, which involves

using an on chip register file.

2.1 An example

In order to illustrate how the RAP uses functional parallelism to exploit the locality and the

concurrency found in mathematical equations, the calculation a 4-point Fast Fourier Trans-

form (FFT) [28, 31] is examined. The 4-point FFT dataflow graph is shown in Figure 2.1.

It consists of 12 multiplies and 22. additions used to calculate the real and imaginary parts

of the 4 output results. This graph is evaluated by a RAP as follows: First a "method"

describing the schedule for each level of the calculation is stored in the RAP memory. Then

a message is received containing the 14 input variables necessary for the computation. As-

suming an ideal setting, the RAP successively runs through each level of the calculation

as described by the method, exploiting functional parallelism by doing all operations of a

given level in parallel. Finally it sends a message containing the results to the appropriate

destination.

In a realistic setting, determining the successive configurations of a method involves

a scheduling problem, since the RAP may not have enough AUs to perform all possible

concurrent operations at once. The RAP has four adders/subtractors and four multipliers.

At any given time there may not be enough AUs to begin all operations that have their

operands ready. Furthermore, the switch may limit the operations that can be scheduled

if it prevents two operands from both reaching the same AU. The scheduling problem is

discussed in detail in Chapter 5.

The off chip I/O bandwidth required is reduced to 25% of the bandwidth required by

a conventional bit-parallel arithmetic chip. A conventional arithmetic chip would require

34 x 3 = 102 word transfers, where 34 corresponds to the number of operations, and 3

corresponds to the two words of input data and one word of output data for each opera-

CI[ApTEK 2. ARCHZTECTTJRZ 19 27 GOR 18

XOR

20 28
GOI

x0l

MR x 13 2t 22
GIR

xil

WAR 22 30
Gil

4
+

Wil x

)UR x 5 ts 23 31
G2R

6

X21

'W2R x 7 16 24 32
G21

W21 x

9

X3R x 17 25 33
G3R

10
X31 x

W3R 11 to 26 34
G31

12 +
W31 x

Figure 2.1: 4-Point FFT Dataflow Graph

CHAPTER 2. ARCHITECTURE 19

tion. Using a RAP, only 26 words must be transferred on and off chip, consisting of 14

input operands, 8 output results, and 4 words of overhead information. This reduced 1/O

bandwidth makes it possible for a communications network to keep the chip busy.

Note that only the data I/O is considered here. It is assumed that the 4X4FFT method

has already been stored in the RAP memory, so that there is no control overhead other

than message overhead. The RAP is able to store several different methods in its memory.

2.2 Using the RAP

2.2.1 A System Perspective

Within the context of the J-Machine, a single RAP can be used to do a calculation, or

several RAPs can be used at once to help speed up the calculation. When used by itself

the RAP acts as a compute server which receives messages from MDPs, does the calcula-

tions requested by these incoming messages, and forwards the results to a specified MDP

destination.

RAPs can also be used in combination to complete a calculation faster. One example

of this is pipelining a computation through several RAPs, as shown in Figure 2.2b. Each

RAP does one part of the computation, and feeds intermediate results to the next RAP

which continues the computation. As in all pipelines, an effort must be made to match the

pipeline stages: each stage should have roughly the same amount of work to do so that no

stage holds up-any other stage. The network must also be considered as a pipeline stage

since it passes data between RAPs at a finite speed.

An extension of the idea of pipelining is the idea of forking shown in Figure 2.2c. In this

case the work of a given pipeline stage is fanned out over several RAPs. The counterpart of

a ork operation is the join operation, where the results from several RAPs are combined in

G7EAFTER 2. ARCHITECTURE 20

Fiue .:RAPg:a RAPAoeb)APPelec RA PFokOeain

d)~RP RAP.i Oeato

CHAPTER 2. ARCHITECTURE 21

some way, before the computation is continued. This is shown in Figure 2.2d and requires

an MDP to perform the synchronization and combining of results coming from different

RAPs.

One simple mechanism based on forwarding templates is provided in the RAP which

permits it to be used in all the ways described above. Templates and their use axe described

in the next section.

2.2.2 Messages

There are three types of messages that the RAP processes in order to support the types of

operations described above:

1. CONFIGURE AND EXECUTE (C+E). This message causes operands to be loaded

into the input registers, passed through one or more switch configurations, and then

unloaded from the output registers. This is repeaied for each set of operands in the

message.

2. STORE METHOD (SM). This message is used to store a method in local memory so

that it can be used by the C+E message. A method describes a. sequence of switch

configurations necessary to perform a calculation.

3. STORE TEMPLATE (ST). This message is u-ea to store a template in local memory.

A template contains forwarding information that alov: the forwarding of results to

a specified destination such as an MDP or another RAP.

Message formats are shown in Figure 2.3. The C+E message has METHOD-ID and

TEMPLATE-ID fields that specify the method and template to be used. Method and tern-

plate IDs are memory addresses that point at the first element of the method or template.

Methods and templates must be sent to the RAP before the C-E commands that use them.

CHAFTER 2. ARCHITECTURE 22

C1E M REPLYOPERANDS OPERANDS ENO

1M METHOD TEMPATE NOEU FCOFGRTIN N
0 REGISTERS REGISTERS NCONFIGURATIONS EN

ST I NEXT RAP ID C+F NEXT METHOD NEXT TEMPLATE END

Figure 1.3: Message Formats

The C+E message also has NODE-ID and REPLY-ID fields that specify the ultimate des-

tiratinn of the results. The NODE-ID is the network address of a non-RAP node, and the

REPLY-ID is a message header. These two fields are used in conjunction with template in-

formation to forward otutput results. The information contained in methods and templates

is discussed in detail in the following sections.

Methods

A method consists of all thc information necessary to put operands through a sequence of

switch configurations. it includes:

1. Which input registers to load with the operands.

2. Which output registers will contain the results.

3. The number of switch configurations that the operands are to go through.

4. A description of each of the configurations. Each configuration specifies the switch

connectivity, and the functionality of the AUs (e.g. one bit might determine whether

an AU does an add or a subtract).

CHAPTER 2. ARCHITECTURE 23

The first three pieces of information are packed into one word (72 bits 1) of the method

description. Each configuration also takes one word. The number of operand sets that will

be used with a given method is not included in the method description. It can deduced

from the end of message signal.

Templates

A template is used to permit the cascading of several RAP chips. It contains information

that allows the forwarding of the output data, in the form of a C+E message, to another

RAP for further computation. A template consists of the address of the next RAP that the

results are to be sent to, and the instruction (method and template) that is to be executed

there.

-Cascading of RAPs works as follows: the MDP sets up the pipeline by loading methods

and templates into the appropriate RAP chips. Then a C+E message is sent to the first

RAP in the pipeline, beginning the calculation. Each RAP uses its template to forward

results to the next RAP in the pipeline. The return address, in the form of the NODE-ID

and REPLY-ID, is passed from RAP to RAP until it is used at the last stage to get the

results to their final destination (the use of the "default" template causes the results to be

sent to the return address).

Templates are specified separately from methods. This allows different calculations to

use common subroutines and permits a single calculation to distribute its work over several

RAPs (i.e. do a fork operation). For example, a routine that multiplies all the elements of

two vectors can be used by several different calculations. By using a different template to

forward the result, such a routine can be used by itself or can be used in an inner product

routine. A RAP can also use the different templates to divide up a problem, fanning data

1The MDP has a 36 bit word including a 32 bit data field and a 4 bit tag field. It is convenient to define
the word size for the RAP to be 72 bits or two MDP words, since all operands are 64 bit floating-point
numbers.

CHAPTE.I ARCHITECTURE 24

out tor a namber of different RAPs. In this case several RAPs contain the same method

and the choice of templates- distributes the work over these processors.

2-3 Block Dia m

Figue 2.4, sboms a. block diagram of the complete RAP consisting of the control blocks, the

memories, an& the datapath. There are four control blocks: input controi, output controi.

witch con"Mo, and network interface control Input control executes incoming messages,

and contrls th. input to the datapath, and most memory operations. Output control is

responsible for creating result messages in the output queue. Switch control is responsible

for loading switch conigurations at the correct time. Finally, network interface control

is responsible for message reception and transmission. By dividing the control into these

four different blocks the operations of receiving a message, loading operands, changing the

switch configuration, unloading results, and sending a result message can be pipelned.

Hardware interlocks resolve memory contention and provide feedback to prevent the queues

from overflowing.

There are three memories on the chip: a main memory for holding templates and meth-

ods, an input queue, and an output queue. The input and output queues are 64 word

memories with separate ports for the network and processor. The main memory (256

words) has separate input and output ports and is shared between the input control and

the switch control, with priority given to the switch control.

The datapath consists of 16 input registers, a switch, a switch configuration register,

a collection of 16 functional units, 16 output registers, and some buffer storage for the

template. The 16 functional units consist of 4 add/subtract AUs, 4 multiply AUs, and S

feedthroughs. The 8 feedthrough units are used to pass operands unchanged with a fixed

delay.

CRAPTER. 2. ARCHITECTURE 25

INPUT WITCHOUTPUT
CONTRL COTROLCONTROL

SWITCHTEMPLATE

SERIL OUPUTOUTPUTIPTIPTSWITCH ARITHMETIC REGS QUEUE

OU U
_____________UNITS________

DATAPATH

NETWORK
INTERFACE
CONTROL

FROM NETWORK TO NETWORK

Figure 2.4: RAP Block Diagram

CEAPTEX . ARCHITECTURE 26

Diitially,. operands are loaded, into the input registers from- the input queue, and axe

shifted; through .the switch. into the functional units. The outputs of the functional units

feed back into. the switch, allowing intermediate results -o be routed back to the inputs

oi the functionaL units- The results: are finally shifted into the output registers and then

am unloaded into the output queue- The input and output registers perform parallel-serial

and seial-parallel conversion, respectively, and can be loaded or unloaded as the switch and

functional units are busy computing another problem. In order to perform the routing of

intermediate results, the switch is reconfigured at regular intervals by the switch control unit

which.L rejoadia the switch. configuration register. The message header information is taken

from. th appropriate template and is unloaded into the output queue before the output

results.

2.3.1 Arithmetic Units

The RAP includes adders/subtractors, and m*tipliers. The design of these units is pre-

sented. in Chapter 4. Their estimated performance is 1.57MFlops, with a floating-point

adder/subtractor Requiring 3.2MA2 and a floating-point multiplier requiring 5.6MA2 .

The AUs are clocked at 80Mhz which is four times faster than the 20MHz clock used

for the memory and control. It is convenient to define two types of cycles: a minor cycle

corresponding to an AU dock cycle, and a major cycle corresponding to a memory cycle.

It is alao convenient to define a word time as the time required to shift a complete operand

into an AU. Since the AUs are 4-bit serial, a word time corresponds to 16 minor cycles or

4 major cycles. The units have a latency of approximately three word times. During this

time the exponent and mantissa are computed, and normalization is performed.

In the initial design there is also a three word latency between when two different

problems can begin computing. However, with suitable design modifications 2, this latency

2 "hese rnodifications -were not imviementea due to time constraints. Chaoter - discusses in .rore detad

CHAPTER 2. ARCHITECTURE 27

could be reduced to one word time. This means that as many as three problem could be

in the AUs at one time (one problem for each word of latency through the AU), increasing

the performance of an individual AU to 4.70MFlops.

In evaluating the RAP, the performance for the improved AU design is used. Within

the context of the RAP, extra time is needed to change switch configurations each word

time. This results in a word time being extended to 5 major cycles, and each AU having a

peak performance of 4MFlops.

2.3.2 Switch

The switch topology is shown in Figure 2.5. Each AU selects one of 8 inputs for each

of their two operands, while the feedthroughs each have the choice of 4 inputs. On the

first configuration of any given method the inputs are taken from the 16 input registers,

while on subsequent configurations the inputs are taken from the outputs of the AUs and

feedthroughs. The column of 2X1 multiplexers is used to make this choice.

The switch chosen does not offer complete connectivity in which any output can be

connected to any input. In fact, it has less than half of the connections of a complete

crossbar. The incomplete switch has the advantage of being faster and requiring less state

information. It is faster because there is less than half the capacitance on the input and

output lines to the switch that there would be in the case of a complete crossbar. The

amount of state required to describe each configuration is only 68 bits (3 bits for each AU

input, 2 bits for each feedthrough, and 1 bit for each adder/subtractor to select the add or

subtract function) which fits into a single 72 bit word. This allows a change of the switch

configuration in a single major cycle by reading a single word from memory. For the bench-

mark problems used to evaluate performance, the incomplete connectivity did not prevent

an efficient mapping of the problems onto the switch. The principal reason for this is that

what these modifications are.

CHAPTEM 2. ARCHITECTURE 28

OU'ro a- IINa 2Xl OUTO
MILIX ASA7 4-

O)iTi lux MAI I

IN1 zxl OUT,
%AUX Feeathrougim I

IN2 OUTZ 2XI OUT2
lmux 0,1,2.3.4,5,8.7 x

2XI OuTa

mux Feedthrouq l

IN4 OLIT4 2XI 4 OUT4
mux

4- D-222-

INS 2xt s OUT$
mux

our&
2XtINS OUTS
mux X

wr Our7 2Xi 7 io-,It.lzt3 OUT7
IINIPLM h 2217

REGISTERS OM MUX
FeedthrougD

INS - I 2XII 8 1. 1 Z 13,14.15 OUTS

OLIT9 mux 9 t9lie'll2XII OUT9
mux

Ourto 2XI 10 x OuTio
IN10, OuTtl muX UMMAZ13,14,10

IN11 2XI 11 OUTI I
muX

OUTi2 I z
IN12 2XI OUT12

OUrl3 MUX
IZ13,14,15,0,1.2,3

INIS 2XI 13 IZ13.14,15 OUT13
MU0A Feedthroulp -22"'

OUT14 Z", 14- OUT14

mux 12.13,14,IS,0,1,2,3 X

IW57_ -Ourls 2Xt OuTis

[mux
through-l- T"

F.,gure2.5: Switch Configuratiom

CHAPTER 2. ARCHITECTURE 29

there are multiple units capable of performing the same function (add/subtract, multiply),

so complete connectivity results in unnecessary flexibility: with proper scheduling, it is

possible to limit the choice of units to a small subset of the AUs performing that function,

without losing much performance. With the switch shown, the RAP achieves 88% of the

performance that is achieved if the switch used is complete (see Chapter 6). In Chapter

5 an expression compiler which maps a given equation or set of equations into a series of

appropriate switch configurations is described.

2.3.3 Using the Datapath

There are several ways that the RAP datapath can be organized in terms of how it calculates

expressions. The simplest way, which does not require the AU to allow consecutive problems

to be pipelined one directly behind the other, is to have all functional units have the same

delay, including feedthroughs. In this case, only one operation can be computing in each

functional unit at once. Since the design for the floating-point units in Chapter 4 has a delay

of approximately three wore times for both the adder/subtractor and the multiplier, having

only one problem computing at once means that at any given time 2/3 of the circuitry will

be inactive. Figure 2.6 shows how the sum of 8 numbers would be accumulated using two

adders and four feedthroughs. In this Figure, a snapshot of the state of the datapath is

shown for each word time. In word time one, two adds are initiated in the adders, X 1 + X2

and X3 + X4. Since only two adders are available, the remaining inputs, X5 through X8

are sent to feedthroughs (FT). In word time two, all operations have advanced one word

time through the functional units. At the end of word time three, results begin to shift out

of the functional units, and two more adds can be initiated in word time four (X9 + X10

and X5 + X6). Operation continues until all the terms have been added together.

If the design of the AUs allows the pipelining of consecutive problems, the speed of

computation can be increased as shown in Figure 2.7. In this case, a feedthrough is turned

into a one word time delay wich deiays an operand until the other operand is available

CUPT Z; ARCHJ.TECTURE. 30

(IV(2) (3)

ACDEB? vi +x2 I1 1 jxte~x2 { r ! xg

AOCERT x3x4- x3x4 Xl +X2

FT-' X5. js -
Xe f _ i Ix6

FI- xe . -s - *..

x X7 x7 x
F x~ 7e' x- -- N

F - a -a --- 7-S 1 - -x-

-DE~m -9,*0 x) T? xx10 xl1

ADOEF s l I- -s~]q jx
-DEF xsx - -. ----

FT- xz,- X7 iT x7

F&T x8 . is x

FV -

FT-' ~ ~x

(7S.- M x1

ADE- a10 -I)d - - - - - -

FT-

FT

ADDER: M 0 x13+at - -i- 31xe14 O-at

Fr

Fr

Fl'ure-2.6: Computing a. Single Problem Without Pipelining

CHAPTER 2. ARCHITECTURE 31

ADDER x11+x2 x5+xG x11.2 x5,xo 1+.2L.

ADDER x3+x4 J Jx7+xS SJ 31

FT 05 50.

FT XG 60.

FT X1 ".7

FT X9 S.X

ADDER 19+x110 X5x114.121 x9.xlOI x11+01X4I

ADDER X7*s x2

FT

FT

FT. FT

014

ADDER

FT x13 O.13

FT

FT

FT

ADDER -30 1 out

ADDER

FT

FT

FT

FT

Figure 2.7: Computing a Single Problem Using Pipeiining

CZAPrE=Z ARCHITECTURE 32

(1) (2) (3) _ __

xi.a -9

AMDER' xi +xZ7I+Y 1
AOFV rU* -3y a3+ X1

Fr J t yr

a. ra Y

ADDED; X94STar)v.yZ rT+z2 x9..x1O y1+y2 yg+VIO zl.z2 xg.XIo

ADR rfi 3yZ3+14 115+16 Y3+y4 y5.y6. IZ3414 x5.x6 ~

Fr s ys Z5 xT-YT j5 XT iT v

-r so y- .- - e A - - - Ie - 8

FTY 7 y7 VT

(7)()()

ADDER xil+x12 y9.ytG zl.22 z9+210 i11+x12 y94y1O yll+yl2 z9#z1O x11+x12--w

ADDER xT+zS yS5,S 23+x4 2S4zO 17.z6 y5+y6 y7.ye z5+26 x7+xS i

FT Y? Z5 Z7 Y? ZI

FT vs iS a ye i
FT

AMDER 1,14ytl~y12 29,210 211.Z2 X13+X14 yl~yi2 yl3*y1l 0142 01304 out.

AMDER Y?.Yo Z3420 :7+28 Yl4ye 27+26

FT ?1
FT - :

FT

FTLE LEI

Figure 2.3:- Computing ;Multiple Instances of the Same Problem Using Pipelining

CHAPTER 2. ARCHITECTURE 33

and there is a slot free in the AU pipeline. In word time two of Figure 2.7, two new add

operations can be initiated since the adders are available, and operands X5 through X8

are available as outputs from the feedthrough units. Note that this scheme also has the

advantage of allowing units with variable delay: an adder with a two word delay could be

used with a multiplier with a three word delay without having to insert an extra word delay

in the adder.

Alternatively, the pipelined AUs could be used to do multiple instances of the same

problem. In order to do multiple instances of the same problem, the datapath is thought

of as three different machines doing the same computation (i.e. using the same method)

on different operands. This is similar to the multi-threaded execution that occurs in the

HEP [34, 17], in which several instruction streams are used to keep a pipeline busy. Figure

2.8 shows an exam-le of this in the case of the 8 number accumulate. In'this example, as

many as three different problems are active in the datapath at once. Notice that the empty

slots in the datapath do not necessarily get filled right away because time is needed to load

the next set of operands into the input registers. This example assumes that a new set of

operands can be loaded and ready to go in two word times.

There are extra costs associated with both ways of exploiting the AU pipelining. Using

pipelining to increase the speed of a single computation requires a new switch configura-

tion every word time. This considerably increases the number of switch configurations in a

method and the storage required for each method. In the example given, 4 switch config-

urations were required in the method in the non-pipelined case, as compared to 10 in the

pipelined case. In some cases this method does not succeed in reducing the time spent in

doing a calculation (consider the case of accumulating 6 instead of 8 numbers in a sum),

but requires 3 times the number of switch configurations in the method definition 1. Having

'It is possible to find a way of compacting the method definition in this case. For instance, a word could
be added to the method definition in which each bit of the word indicates for each word time of the method
whether the switch configuration should change, or whether it should remain the same a in the previousword .ime.

CHABTMR2. ARtCHITECTURE.- 34

seveca- different. problems. in the datapath- requiires. hardware to keep track of where each

of.them is in. the.methiod (i.e.. it is necessary to keep three different "Instruction Pointers'

into- the: current method). Alsn the switch configuration-. may aave to be changed three

time& as. ften -(onae every ward time) as. the non-pipeiued case. Furthermore, in order !.o

expioit.this; type, oi usago, th e problem being~soived must require that the same method be

caiculatedznany. times.with differenz.-operands..

All. things !:oasidere4 the best way of exploiting the pipelining..of problems in the AUs is

to- wpipeiiningto increase the peff-ormance of, a single problem instance. Na extracontrol

hardwarftAs. reqvired.over the case. where the A.Us are not pipeinedi, and it is not necessary

tor have makay instance-of the. same problem. in order to achieve good performance.

=r.:. Coruparis9n to.,Another Approach

A more- conventional way of dealing with the off chip I/O bandwidth problem is to include-

aregister file on chip as shown in Figu~re 2.9. Intermediate results are stored in the register

WU(so, that. they can be reused without going off chip. This reduces the off chip bandwidth

in -the saxn. way that~ the RAP -doea~by keeping intermediate results on chip. Having a

regiter flleon, chip moves the, 1/0 problem on chip where it can be dealt with more easily by

using multiple ports. .Using multi-ported register files to solve the off chip 1/0 problem does

not, use -chip area as efficiently as the RAP, and is more difficult to control, as is discussed

in the followig sections..

2.I1 Parallel Arithmetic vs. Serial Arithmetic

Seiiabarithmetic uses chip area more efficiently than a parallel combinational approach. For

purposesof this section,. efficiency is. defined to be P/A where P is the performance achieved

and. A is thecost of this performance in terms of the cip area. 7igure 2.10 compares -he

CHAPTER 2. ARCHITECTURE 35

._ ,, w Parallel

multiplier

Register

File File Parallel

-- ' Adder

641

Figure 2.9: Parallel Arithmetic Using a Register File

CHPTER 2. ARC ECTURE 36

tjvefficincyr of combinational, paraillel pipelined, and. serial pipelined approaches.

As a, starting point consider the combinacional case. Performance P is defined as 3/T

where B is the number of bits done in parallel, and T is the time required to do the

computation. The area required for the implementation is A, so that the efficiency of the

impametaion is just F/A. rI the combinational case only a. smal portion of the logic is

active ait any givem time, corresponding a wavefront of activity of width At propagating

through the circuit, where At. is the switching time of the circuitry.

Whem the combinational unit is pipelined by dividing it into n stages and inserting

latches between the different stages, there is an increase of performance because there are

a wavefronts of computation active at the same time. This increase in performance is not

without cost: there is a percentage increase ((n - 1)e) in the area required due to the

increased circuitry, and a percentage increase ((n - 1)6) in the time of computation due

to synchronization costs and delay of the latches. These increases are proportional to the

number of latch stages added. The net result is that pipelining increases efficiency up until

the point that the cost of the latches becomes significant. In order to get some feeling for

the cost of the latches, reasonable values for the parameters e and 6 can be derived from

the arithmetic cell designed for the prototype fixed point RAP, which is described in more

detail in Chapter 4. This cell does two bit arithmetic and requires B/2 stages where B is the

number of bits. The area of the cell is 9.7KA2 and the latches require approximately 50%

of the area and contribute approximately 50% of the delay. Using the expression for the

area in Figure 2.10b the formula A2 = 2A = A + (B/2 - 1)cA must hold, from which it is

determined that e = 2/(B - 2), or 0.032 when B = 64. Making the conservative assumption

that the time in the circuitry increases linearly with the number of bits, and also that the

time spent in the latches is constant, then the percentage cost in time for each stage is

6 = 2/1B, or 0.031 when B = 64. For these values of e and maximum efficiency is achieved

when n = 30.

Comparing the serial case with the parallel case is compiicared because *heir modes of

.CHAPTER 2. ARCHITECTURE 37

1) COMBINATIONAL

B bits
PERFORMANCE -P1 P =B/

TIME -TI aT

_
/: P/A

AREA -Al -A

2) PIPELINED (n STAGES)

B bits

- .. .-T2 T(l+(n-1)8)/n

- " " P2/A2 nP/(A(1+(n- 1)e)(1+(n-1)8)I

A2 - A(l +(n-1)e)

3) SERIAL
B/n bits

A T3 m T(1+(n-1)8)/n

P3/A3 -nP/(A(1 +(n-l)E)(1 +(n-1)8)I

A3 - A(l +(n-1)E)/n

Figure 2.10: Parallel Arithmetic vs. Serial Arithmetic Efficiency

CZ4TEZZ ARC iTECT URE 3

opencon, ace so di~iwn az th~de pipeline case each, stage: completes its work on a given

Lzobiem± anzd& the next inputs are [com another problem. ln, the serial case each stage works

oflL Uha same- problem severai cycles. receiving. pairt of the input at. each cycle. However.

by- maiis ; umler oi simpifying, assumptions, the serial- casw, can be compared to: rhe

L_ ~Aume that the' umber~ off serial. stas, i& inversely proportionall to- the number of

lWikadbnA.e' in. pa=aleL

?_ Asatiattetime- required. for agavezstage is directly- proportional. to~ the number

oibitv dnne in, paralleL

TR&t fizve assumption, implies- thatr if? doing one bit at a time requires 64 stages, then

daing 2- bituw ao, a& time' wouldi require-32; stages The are of multiplier arry structures as

wel a&of,& number- of- other. structures normally used, in floating-point circuits (e.g. barrel

shifters),. scales, as. (R/n.)2 where- (B/n) is th.w number (if bits done in parallel. Reducing

the' number-ot bits done- in. parallel by the factor n- would normally. reduce-the area by a

factor-of, n? . However, under the-above assumption the area is reduced only by a factor of

a, siixcswrecing the-number-of.bitv done -in- parallel t nreases the number of stages. This

assumption isa reasonable- for most algorithms- but.-itt does not, take into -account -algorithms

whicbm require only-, a. fixed. I mber of, stages independent of the number of bits done in

prallek- (example&. of these -are: integer addl which requires- only, at single stage, and some

ofithset digiVa.1in*6.A .S291..clase~ofalgorithmns). Practical floating-point algorithms are

dcultitotimpeneA-iathi~waybecause ofthe -mutual. dependence -of the exponent and

tbiwmawa Wafuds.-

The secovAd-assnmptionis. &~.pessimistic: assumption since time can be made to scale as

I*(/) for-many operations. This assumption is sufficient for- a first order approximation

since(BI/m) is- no larger thn &4 for. the- cases, of interest, and since achieving the logarithmi c

tim.w isuallv intvolves a. correspon diig increase in the area costs.

CHAPTER 2. ARCHITECTURE 39

Under these simplifying assumptions, the expression for the efficiency in the serial case

shown in Figure 2.10 is the same -as for the heavily pipelined case. The big advantage

of the serial implementation is that it achieves an incremental extensibility not achievable

in the parallel cwe: if there is enough bandwidth to maintain 8MFlops of computation,

then two 4Mflop serial units can be used without paying the area costs of a full parallel

implementation. Thus the serial implementation provides both efficient use of the silicon

area and allows an incremental increasing of the computing power. The disadvantage of

serial arithmetic is that it cannot use logarithmic algorithms that can be used in parallel

implementations (e.g. Wallace Tree multipliers [18]), which increase the speed of a single

operation.

2.4.2 .Register File vs. Switch

The use of a switch rather than a register file is more efficient in terms of area and is easier

to control. Figure 2.11 shows the area required for both options. The register file has fewer

ports but requires that each port be the full 64 bits wide. The switch has a larger fan in

and fan out but uses narrow serial data paths. For relatively small switching requirements,

the switch is more area efficient. For sake of comparison, compare the Weitek 3164/3364 [4]

chip which has a peak performance of 20MFlops, to the RAP which has a potential peax

performance of 32MFlops. The 3164/3364 has a 32X64 register file with 6 input and output

ports, which requires 6 times the area of the RAP switch which routes data 4 bits at a time,

has 32 input ports, and 24 output ports.

On a more. qualitative level, general routing in the case of the register file is made

difficult by the need to route multiple full width busses. In order to solve the I/O problem

the register file must have multiple ports (6 ports are used in the Weitek 3164/3364) and

the area required to do general routing of these busses is proportional to PB 2 where P is the

number of ports and B is the number of bits. Routing in the serial case is all done within

the switch. The above area comparison neglects a number of the extra costs associated

CIMPTE I2. AR-CIITECTURE 40

INPUT

CONTROL
S

1
OUTPUT
PORTS

rNPU'7OUTPUT
PORTS

AREA AREA
OF - (DOBrS. #POFTS)(#PORTS.JWORDS) OF = (#6ITS.#INPUT) (#BITS.#OUTPUT)

REGISTERS SWITCH PORTS PORTS

Fqpre 2.11: Register File Area vs. Switch Area

with each of the methods: the register file requires address and decoding logic for each of

its ports and requires bus multiplexing into the functional units, while the switch requires

switch control logic and parallel-serial/serial-parallil conversion registers.

Control of the switch is easier than control of the register file because control signals

have to changed only once every word cycle, whereas control to the register file must be

available every clock cycle. In the case of the switch, the control signals remain the same

for at least 16 minor clock cycles as data propagates serially through the switch. Delay

paths through the switch can be optimized without worrying about control overhead. In

the case of the register file, there is a control cost associated with every clock cycle since at

each cycle the register addresses of source and destination registers must be provided and

decoded.

CHAPTER 2. ARCHITECTURE 41

2.5 Summary

The RAP architecture uses serial floating-point arithmetic units in combination with a

flexible switch to route data between units. This scheme can lead to a substantial reduction

in the I/0 bandwidth required to sustain a given level of computation. It does this by

eliminating all bandwidth costs associated with storing and retrieving intermediate results.

The RAP is designed with a message passing interface so that it fits into the J-Machine,

a message passing concurrent computer. The RAP is controlled by three messages which

allow it to store "methods" and forwarding information in its local memory, and which

allow it to execute these methods on different sets of data. Within this system, RAPs can

be set up in a RAP pipelines, fork operations can distribute work over several RAPs, andemerge operations can combine the results from several RAPs.

The block diagram of the RAP includes the control blocks, memories, and the datapath.

The control blocks are set up so that the operations of receiving a message, loading operands

into the datapath, computing a problem instance, unloading output results, and sending

result messages can all be pipelined. The main RAP memory is used to store methods and

result forwarding information. Input and output queues are used to buffer incoming and

outgoing messages respectively. The datapath contains the 16 functional units, including 4

add/subtract units, 4 multiply units, and 8 feedthrough units. It also contains the switch

that routes the data between units, input registers, and output registers.

The use of bit-serial arithmetic and a switch, as in the RAP, can be compared to

the use of bit-parallel arithmetic and a register file, as in more conventional approaches.

the serial/switch approach uses logic efficiently, while using less area, and being easier to

control than the parallel/registers approach. The next two Chapters will concentrate on

two important aspects of the RAP design: the control logic and the datapath design.C

Chapter 9

RAP Simulation and ,ontrol

Logic

I claim r t to have controlled events, but

confess. plaini. that events have controlled me.

- ABiAHAm LINCOLN in Lett, to A.G. Hodges, April 4, 1864

She makes me wash, the comb me all to thunder... The
uwidder eats by, a. bell, she oes to bed by a bell; she gits up

by a bell - everything's so a, lul reg'lar a body can't stand it.

- MARK TWAIN in The A ientures of Tom Sawyer (1876)

Ik orddev tadeaign. and. debug. the control logic, and to ,aluate performance, a. register

transfer leveLsimulator. was written to simulate the RAP. T: simulator is written in LUCID

Common, LISP and: runs on the SUN workstations. This lapter describes the simulator

orgpizatioa and; presents the flow charts for the control Ic c of the RAP chip.

-i2

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 43

3.1 Simulator Description

The simulator is a discreet event simulator: events are scheduled on a priority queue, and at

each tick of the clock events scheduled for that time are taken from the queue and executed,

causing other events to be scheduled. The simulator was written in an object oriented

fashion using the LUCID LISP flavors package [22]. Several RAPs can be simulated at

once. Commands are provided to set up the simulation, run the simulation, and observe

the state of the RAPs as the simulation progresses.

A number of simplifying assumptions were made. For instance, memory for methods

was allocated statically in fixed size blocks. In the real RAP memory management will be

done more efficiently by storing methods in variable sized blocks. Another simplification is

that tb- simulator knows nothing about the switch topology: it simply executes the given

0 operations. Switch constraints must be enforced by the user or compiler that generates the

sequence of switch configurations in the method. These simplifications do not affect the

performance results obtained.

3.1.1 Simulator Organization

The simulator code is divided into the following main components:

1. Global variables and Constants. These include such things as the current time

step, the locations being watched at each simulation step, and the size of the RAP

memory and queues. They also include simulator parameters which represent the de-

lay associated with certain events such as reconfiguring the switch, or a word arriving

at the network interface.

2. Definition of a RAP object type. The RAP is described as an object consisting

0of all the sub-blocks of the RAP. Each sub-block of the RAP in turn is also described

CHAPT 3. RAP SIMTJATION AND CONTROL LOGIC 44

a oiject. The major components of the. RAP object are the input and output

queues, the memory, the datapath, the network, the control, and the priority queue

of pending events.

3. Ingerna Eaent CoabmL. Pregrraa. The inpirt control, output control, switch

astual, aad, neetwrk interface control, are all described as RAP methods. They

emicitly desczbe the RAs internal controL Sepwarting the control programs of the

MAP meas thn*t the control algorithms ae directly implemented and they have a.

aIt lazien to hardware.

4. Externa Event Catrol Pr grams. RAP methods are written in order to control

events which are not directly controlled by the internal control of the RAP, such as

words arriving at or leaving from the network interface.

5. Priority Queue Manipulation. Procedures used to manipulate the priority queue

of events. The queue is just an ordered list.

6. Command Programs. Programs written to set up a simulation, to rur the simu-

lator, to look at RAP state, and to perform other useful functions for debugging and

observing results.

3.2 Control

The control of the RAP is divided into four independent sections: input control, output

control, switch control, and network interface control. Input control executes incoming

messages, and controls- the input to the datapath, and most memory operations. Output

control is responsible for constructing result messages in the output queue, while switch

control is responsible for loading switch configurations at the correct time. The network

interface logic controls how words coming from the network are put into the input queue

and haw words are sent out to the network from the output queue. These control blocks

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 45

must communicate to synchronize the different stages of the calculation, and to prevent the

queues from overflowing.

In order to implement the control, various registers and signals were introduced to

interface with the memory, the network, and the datapath. These control registers and

signals are listed below. These list should be used as references when going through the

control flow charts which follow.

The control registers are:

1. Queue registers: HEAD and TAIL registers for both the input and the output

queues, referred to as HEADIN, TAILIN, HEADOUT, and TAILOUT.

2. Memory registers: Four registers (AO-A3) used to read and write memory.

3. Datapath Input/Output control registers: Six bit-vector registers used to con-

trol the loading and unloading of the input and output operand registers.These regis-

ters contain 1 bit for each input or output register.

(a) AIRREFAIRCNT: Address of Input Registers Reference and Count registers.

These registers are used to control the loading of the input registers. AIRREF

identifies which input registers should be loaded for the method currently exe-

cuting. AIRCNT points at the next input register to be loaded.

(b) AOREFAORCNT1, AORCNT2, AOR.CNT3: Address of Output Registers Ref-

erence and Count registers. These registers are used to control the unloading

of the output registers. At any given time there may be four problems in the

datapath: one being loaded into the input registers, one being being calculated

by the AUs, one being shifted out of the AUs into the serial part of the output

registers, and one being unloaded from the parallel part of the output registers

into the output queue. Each of these four registers corresponds to one of the four

possible problems in the datapath. The three AORCNT registers also have an

CMAPTRZ.3. RAP-SIMULA7f0 AND CONTROL LOGIC 46

atm bit-which inditates- whether tle-probem is the last problem of the message.

.AOBCNT3 is Used tol point at the successive output registers as they are being

unloaded.

4.. Cdudfgursition control registers- Thtese registers control the switch and the se-

queec of couI1turations- it run& tlirough.

(a) SWITCH: register ased to-store' the carrent. switch cowfiguration.

(b) CR=TF,C1.RZF-1;C1tCNT: Coaiguration Register lteference and Count regis-

twa. Thene registers are ased to control the loading of switch configurations.

CRR.F1 contains the number of confgurations in the method which will be

executing next,, CR.REjF2, contains the ziber of conafigurations of the method

whick is citnently -ekecutiig, and CRJWNT keps track of Which configuration in

the method is currentry loaded.

5. Network Interface Registers: These registesaeue'osn n eev words.

* from the network.

* (a) NET-I-B.EG: Register used td recdive a word from- the n etwork.

(b) NET-OUT-REG: Register used to sexid it word to 64e net'~bri".

6.QIN-REG.- Register in whicht the word dequeued from the input queule it.s stored.

7h* eantni signals used tor communicate between the different control blocks are:

it,. Naftsfewpikeit indliates; whethier the input control: can lo:ad a new fo6rwarding

tiampfuce into.. the temlplate, buffier. Set by~ the output control; reset: by the input

T2 8*-dbwn~ibad indicates whether the next problem' can be shifted into the A Us. Set

wirert a download is alilowed to occur; reset by the- input control on a download.

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 47

3. go-unload: indicates whether the output registers are ready to be unloaded. Set

when the results of a calculation are uploaded into the parallel part of the output

registers, reset by the output control.

4. reconfigure: indicates that the switch should be loaded with the next configura-

tion. Set internally a predetermined amount of time after a new problem has been

downloaded or after the switch has just been reconfigured, reset by the switch control

logic.

5. templateO: indicates whether the default template is being used. Set and reset by

the input control.

6. net-in-status: indicates whether the network has a word ready to be enqueued. Set

by the input network logic, reset by the input enqueuing logic.

7. net-out-status: indicates whether the network is ready to receive an output word.

Set by the output network, reset by the the output dequeuing logic.

8. end-count: counts the number of complete messages that are in the output queue.

Incremented every time the last word of a message is inserted into the queue, decre-

mented every time the last word of a message is sent out to the network.

9. started-before-end: indicates that message transmission began because the output

queue filled up rather than because a complete message was ready to transmit. Set

and reset by the network output control.

3.2.1 Input Control

The input control flowchart is shown in Figures 3.1 through 3.3. It is important to note that

throughout this flowchart there are two types of implicit wait states. The first is reading

the input queue. which may require waiting until a word is present in the queue. The

second is reading memory, which may require a delay of one cycle if the switch control is

CHArrER 3J. RAP SIMULATION AND CONTROL LOGIC 48

reading memory.. The memory has, an input port and an output port so that no waiting is

required when writing memory, although thi& could easily be modified to assume a single

port memory.

Initiaily the inpur contzoi look. at" the. frs word of a, message and- begins a control.

sequenw baed. ow the t ype oi message- If' the message is a- SM or ST message, then

thrmetbo or remplat is- simply stored. im memory. Ex. the case of a, C+E. the control

seqmence: is nmre-compicated firsm the varionu- register are set up to prepare- execution of

th.o- m od. thet NODE, ID/ REPLY M is inserted into the template slot reserved for it in.

meumoey a=6 the dt.set oi operands areloaded. intathe input registers. At thi& point, the

conrtok.mn uimakes sure that no interference will occur with the previous problem. If the

prewious m .exeirion has- finished with the three words of template buffering (shown

as.TZMM, TEMP ad.-TEMPL3), then- the input control loads the new template into

te template, buffw loations. Then, if the previous, message. is, finished with the" datapath,

theinput control set& up the switch sequencingregisters (A2, A3, CRREF2, CRCNT) and

be Os t h calculation.

ThI-nput control continues loading and-calculating, problem instances until the- end of

messagw is reached. The' input control only allows- a. download to. occur if the go-download

signal1i asserted. Thw go-downoad. signal.is. only asserted if the previous problem has run

thzuugfi it last confI and. will have sufficient time to unload its results, and there is

sufficien morn in- tbo-outRut queue to hold: the results. (the go-download. signal is discussed

ini more- ditaiL in the, switch control section).

Me input: control' logic transmits information. to the output control logic as to which

regitemontaia results,.using the A OMN T1, A RCNT2, and. AORCNT3. registers. The

input control only has, to load! the A.ORCNTt register and, this value gets shifted automati-

cally fromi A.0ONT: T AoOCNT2 following the last configuration, and. from AORCNT2

to.AG1LQNI3;once the-results ae uploaded into the parallel. portion of the output registers.

_4YM.C3, is used: by the- ontrtut control logic.

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 49

Dispatch on firs! wor ofn nmmsaion

AOl -(HEAO(N) statin oftenPY I
HHEADIN * HEAON+ I

O)RE .DIN-REG) A 4E AO)Inpu reitr t~oI loa
HEADINm HEADN + IAIRCNT - irut regrS tr

FigureORR~f (.AO: Outpunto Fo C t proto b

CRH&BTE.3:3 RAZSIULAffIOti AND CONTROL, LOGIC 50

Vdow, ad.
-ready 7

y

CHREP 2-CRREFS;
CRCI4T - CRAMF2I

A3-m.AQ6

Figure 3.2: Input Control Flow Chart (past 2)

O CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 5

AORCNTi AORREF.mo eWndNRE AORCNT1 AORREF,WW _

N

AIRNT - I-RE

AIRCNT -a next kpo ut regite

Figure 3.3: CN Inu Cnt r Flow Chrt(at3

C TE.. RAP"SIMULATION AND CONTROL LOGIC 52

3.2X Qutput Control.

The output control flow chart is shown in Figure 3.4. The output control is responsible

for loading: the-result messages into the output queue. First -he template is output which

contains tlznecessary message header information. If the results are to be sent to their

ffiaL destinationh the tempiatea signaL is. active and only one word of the stored template

is. needed- Otherwise, all three; words of the template are needed to forward the results

to anothr RAP' for further computation. The output. control then unloads the output

registems after the completion of eac1. problem in, the message. Once all the results of the

message 4ein& pzcessed are- unLoaded into, the output queue, the "end" word is appended

to the queue, to terminate the message. Note that a problem never begins calculating unless

it is &uaranteed that. there is enough, space in the output queue to store its output results.

This. means that theooutput control will never stall in the middle of unloading the output

regst

&2.3 Switch Control

The- switch control flow chat is shown in Figure 3.5. Every time the switch has to be

reconfigared the switch control loads the next configuration into the switch register. In the

case that a new problem is starting and the first configuration has been loaded, then the

switch logic also determines whether the new problem can be downloaded. The problem is

allowed to be downloaded if two conditions are satisfied:

1. There isenough room in the output queue to store all the results that will be generated

by the computation.

2. Starting the new problem will not cause any results to be lost from problems currently
in the datapath. This could occur for instance when the previous roblem does ot

have time to inish unloading -he output .egisters before rhe resuits 'rom :he next

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 53

(TsLOUI) (TAORCNTS)f~o
WeOU 7 TTjLOIJT a ILU

TAO-uTla - TaiLOT+I

Fiur 3.4:Otpt Co-o FlowChar

CRA"TERZ3.. RAPE SMhUIA fON AND -CONTROL LOGIC 54

rfYoiiqr

Fiur 35:Swtc ConRO FlwChr

CHAPTER 3. RAP SIMULATION AND CONTROL LOGIC 55

YYYY

fhi?

N

(TIALIN) a NETIN-REG
TAILIN, aTAIL I
net4n-sWu a waN

Figure 3.6: Network Input Control Flow Chart

problem arrive. This difficulty is avoided by requiring that each method be at least

four configurations, guaranteeing that there will be at least 16 clock cycles to unload

the output registers. This is not a costly solution since any method which does useful

calculations must be at least three configurations anyway, the number required to do

one add/subtract or multiply.

3.2.4 Network Control

The network control consists in the interface logic between the input queue and the network

and the output queue and the network. Flow charts are shown in Figures 3.6 and 3.7 for

the network input logic and the network output logic respectively. The network input logic

fills the input queue by taking a word from the network each time a word is ready and

CMAP=E 3. RAP SJM1ULAflON AND CONTROL LOGIC 56

Nmtu

MEADOWT- HEADOUT + I
nsa6asj -wat

Fiupne 3.7: Network Output Control Flow Chast

CHAPTER 3. RAP SiMULATION AND CONTROL LOGIC 57

there is room in the circular queue. The network output logic supplies output words to

the network beginning when a complete message has been accumulated in the queue or the

queue is getting too full, whichever comes first. The number of complete messages in the

queue is kept in the end-count variable.

3.3 S ummary

This Chapter presented the flow charts for the control logic of the RAP, including the input,

output, switch, and network interface control logic. Registers and signals needed to control

the RAP are defined. This logic was verified using a RAP register transfer level simulator

and it is straightforward to translate the control flow charts into logic circuitry in the form

of random logic or small PLAs.

Chapter- 4

Hardware Design

Thunder it good, thunder is impressve;
but it is, lightning that does the work.

- MALK TWAIN, in, &Letter to an Unidentified Person (1908)

Damn- the, torpedoes. - full speed ahead!

DxvVID GLASGOW FARRAGUT, at the battle of Mobile Bay
August 5, 1864.

Tbhi chapter discusses the hardware design of the- RAP; concentrating on the design of

therflbatintpointunits. Theliardware design can be divided into different distinct parts:

the dktapat*. the control;. the out chip memories, and; the network interface. The most

criticalportion ?of-the design in terms.of proving the feasibility of the RAP is the datapath,

containing- the- Bating-point. units and the switch. The floating-point, units must achieve

thearg offan 8M-z. cock, andi besmail enough. so. thatt several serial units can fit on a

sih*cihi* h switc1i mus, be able to.feed;data* through. at, the same speed at whic the

w-itlmetic- unitm are- einx, ciocked. The. other portions off the design such as t ze memory

.- 5-

CHAPTER 4. HARDWARE DESIGN 59

and control blocks are straightforward to implement, and the network interface is similar

to the design in the MDP.

The floating-point rate achieved by the adder/subtractor and the multiplier in the cur-

rent design is 1.57MFlops per unit with area estimated to be 3.2MA2 for the add/subtract

unit and 5.6MA2 for the multiply unit. The design could be modified to be more highly

pipelined resulting in an increased performance of 4.70MFlops per unit, without signifi-

cantly increasing area. When used in the RAP, these modified units would run at 4MFlops,

because some overhead time is required to change switch configurations. A AP contain-

ing four adders/subtractors and four multipliers has a peak performance of 32MFlops and

about 40M.\ 2 of the chip area is taken up by the arithmetic units.

The remainder of this chapter discusses the hardware design of the datapath in detail.

Section 4.1 describes the number representation and conventions used. Section 4.2 presents

a comparative study of a number of 4-bit serial adders, the most critical component of

both the floating-point adder and the floating-point multiplier. Section 4.3 describes the

operation of the floating-point adder/subtractor and the floating-point multiplier. The

remaining components of the datapath design, including the switch and register design, are

presented in section 4.4. Different ways of improving the design of these units is described

in 4.5. Finally, section 4.6 briefly presents the fixed-point RAP, a chip designed in a course

project to experiment with some of the RAP ideas.

4.1 Numbering System

4.1.1 Format

For simplicity, the non-standard floating-point format shown in Figure 4.1 was chosen. It

consists of an 8 bit, two's complement exponent field, and a 56 bit, two's compiement man-

CHI J*.PE 4. HARD WARE DESIGN 60

63. 5655 54 0

General n.. compiement ' I 2's compiement
Foum* exoonent I mantissa

Binary
pont

Qaeflow a lt .1t 1- X- XX..... X XX)

Un1ow " 0Ya 0 aa 0 a X X X X X X

Zero [tooooooo 00

Figure 4.1: Floating-Point Format

tissa, field. This format departs from such standards as the IEEE Floating-Point Standard

(3, 15] but. has the advantage of permitting a uniform treatment of the exponent and man-

tissa. in two's complement form. The exponent is a two's complement number E in the

range -128 < E <_ 12T. The mantissa has a binary point following the first bit so that the

mantism M falin the range - 1 _ M < 1. The resulting number is equal to M x 2E.

4LU. Normalized Numbers

Only., normalized- numbers, are allowed in our numbering system. A normalized floating-

point number is one in which the mantissa M falls in the range -1 < M < -1/2 when

M is:.negative and in the range 1/2:5 M < 1. when M is positive. This implies that the

second: bit. of:&.positive normalized mantissa must always be a I and that the second bit of

CHAPTER 4. HARDWARE DESIGN 61

a negative normalized mantissa will always be a 0 e.g. 01010001011 is a normalized positive

mantissa, 00101000101 is an unnormalized positive mantissa, 100111100000 is a negative

normalized mantissa, and- 111100001100 is a negative unnormalized mantissa. Allowing

only normalized numbers as inputs to our floating-point units prevents the unnecessary loss

of precision that results from using unnormalized mantissas, and simplifies the logic .

4.1.3 Overflow and Underfow

The result of an operation can fall outside the range of representable normalized numbers,

either by requiring an exponent greater than or equal to 127 (overflow) or by requiring

an exponent less than or equal to -128 (underflow). Two exponent values are reserved to

indicate when either of these conditions occur. The most positive exponent, 127 decimal or

01111111 binary, is used to represent a number which has overflowed. The most negative

exponent, -128 decimal or 10000000 binary, is used to represeitt a number which has under-

flowed. When an overflowed or underflowed number is used in an operation the conventions

shown in table 4.1 are followed.

4.1.4 Zero Representation

It is convenient to have a special representation for zero. Zero is represented by the most

negative exponent (-128) and all zeros in the mantissa. As is shown later, this avoids a

problem which occurs when adding a number to zero.

'The IEEE Stsndard for Floating-Point Arithmetic uses 'denormalized" numbers. A denormalized num-
ber consists in an unnormalized mantissa and a special exponent (usually the most negative). It allows the
representation of numbers that cannot be represented as normalized numbers due to the fact that the the
exponent required is smaller than the smallest available exponent. The RAP does not allow denormalized
numbers.

CHAPTER 4. HARDWARE DESIGN 62

OperandA Ooerand B I A-B _, __- _ AxB ,
Overflowed Overflowed Overflowed Overflowed O5 rowe€l
Overflowed Underflowed Overflowed Overflowed Overflowed

Underflowed Overflowed Overflowed Overflowed Overflowed
Undwrflowed Underflowed Underflowed Underflowed Underflowed
Gwrtowed Normalized # Overflowed .0verdowed Overflowed

Normalized # Overflowed Overflowed Overflowed Overflowed
Underflowed Normalized # Normalized # - Normalized # Underflowed

Normalized # 1 Underflowed Normalized # Normalized 4 Underfiowed

Table4,..: (verflow/Underirow Conventions for the Add. Subtract, and Multiply Operations

4.2 Design of a 4-bit Adder

Tire critical component of the circuit design and the one most likely to limit the speed at

which the floating-point units can be run is the 4-bit adders used in the design. This is

because in the design, signals must propagate through the four bit carry delay and through

one or two additional logic levels within one half dock period. A number of 4-bit adders

were cansidered inckuding:

L Auimpe precharged Manchester carry -chain (36].

2. A prech-arged Manchester carry chain with positive feedback puidown circuitry.

3. 4-bit lookahead adder using domino logic [361.

4. Ripple carry adder with optimized carry path.

5. A quater4ary full adder (5].

These adders were evaluated in terms of the area they required and the speed they

achieved. The quaternary full adder was discarded as a possibility because of area con-

straints: since it requires- encoding the incoming four bit value into a new eight bit value, it

doubles rhe latches ind vires :n icich stage of '.he iiataoath. .t a so reauires encoding and

CHAPTER 4. HARDWARE DESIGN 63

OUTPUT

LOAD

I SUM I s u m 2 sG E3U ! Es4U

iN PUT STAGE 1 IS A E CARGRYSCARRY CRIRY
CIRCUITRYCIRCUITRY

Figure 4.2: General 4-bit Adder SPICE circuit

decoding circuitry which is not convenient when all that is needed is a single 4-bit adder.

The remaining four adders were simulated in SPICE. The general form of the circuit used

for simulation is shown in Figure 4.2. The parameters varied in order to increase speed

were the size of the transistors in the input carry circuitry and the size of the transistors

in the carry circuitry itself. Detailed SPICE models, sample waveforms, schematics, and

layout for the different 4-bit adders are found in Appendix A.

The signals that are critical in terms of timing are the last carry out which must be

latched, and the 4th bit of the sum which is the last bit of the sum to be calculated. Table 4.2

shows the time required for the signals to propagate to points A and B of Figure 4.2, where

point A is the point at which the last carry out is stored, and point B is is the output of a

register in which the most significant bit of the sum is stored. These circuits approximate

the worst case capacitive load found in the floating-point circuit design. Because the Ripple

Carry adder does not use precharging, its operation is different from the other adders, and

the delay is measured to points C and D of Figure 4.2 instead of to points A and B. The

speed target for the design requires that the complete calcultion happen in one half cycle

CHAPTER 4. HARDWARE DESIGN 64

Adder Type Carry Sum Area Estimate
Manchester carry 4.2ns 4.2ns 48.8KA2

chain
Manchester carry 3.6ns 3.Sns 52.4KA2

chain with kicker I
Carry lookahead 2.8as 3.2ns 81.9KA2

Ripple Carry 4.4ns 5.Ons 47.2KA2

Table 4.2: 4-bit Adder Delay and Area using CMOS 2)im Worst Speed SPICE Models.

or about 6is. All four circuits meet this requirement. Also shown in Table 4.2 are area

estimates for each 4-bit adder. In order to meet speed goals, the adders use many large

transistors (as wide as 48tm). As a result the area estimates are approximately twice as

large as they would be if speed was not crucial, and smaller transistors were used.

The precharged Manchester Carry circuitry and the Manchester carry circuitry with

positive feedback pulldown circuitry are shown in Figure 4.3. For a carry of only four

bits the precharged Manchester carry chain with positive feedback is marginally better

than the simple precharged Manchester carry circuit. Its real benefit is only manifested in

carry chains longer than four bits. This circuit also has the disadvantage of having a noise

margin equal to the threshold voltage of the p-type transistor: a drop of one threshold on

the precharged carry node will activate the positive feedback and pulldown the carry line.

The precharged carry lookahead circitit (see Appendix A) is the fastest circuit. The cost

is a substantial increase in the area required to implement the circuit because each stage

requires its own special carry circuitry which takes inputs from all previous stages. Finally,

the ripple carry circuit of Figure 4.4 consists of two different stages, each with transistors

sized to minimize delay. It is the slowest in terms of speed, though it requires less area than

the Manchester Carry circuit due to the absence of clock lines.

The best choice for the 4-bit adder in terms of satisfying the speed requirements while

using the minimum area is the simple Manchester carry chain. This circuit can be optimized

CHAPTER 4. HARDWARE DESIGN 65

ebb

Figure 4.3: Manchester Carry Circuits a) Normal Manchester Carry Circuit b) Manchester
W Carry Circuit with Positive Feedback Puqdown Circuit

2411

oi1211211s

u

341

Figure 4.4: Stages of the Ripple Carry Circuitry

CHAP=FR 4. HARDWARE DESIGN 66

further by gradually reducing the size of the pulldown transistors at each stage. This works

because stages at the end of the carry chain have less capacitance to puldown than the

stages at the beginning of the carry chain, oo they can use smaller transistors to achieve

the sarme speed. The gradual reduction in size of the pulldown transistors increases the

pulldown speed of the stages at the beginning of the carry chain by reducing the diffusion

capacitance pesent on the carry line.

4.3 Floating-Point Units

A serial floating-point adder/subtractor and a serial floating-point multiplier were designed.

Both units have a latency of 51 clock cycles of 12.5ns. A new problem can be shifted in as

the previous result is being shifted out, so that a complete result is produced once every 51

clock cycles. This corresponds to a rate of 1.57MFlops per unit.

The implementation is 4-bit serial in order to make full use of the clock period. In

single bit implementations signals propagate in times much smaller than the smallest clock

period that can be reliably distributed without clock skew problems, and thus do not make

full use of the clock period. Manipulating four bits at a time means that there is more

work to be done at each cycle, and better use is made of the clock period. Efficient serial

algorithms exist for doing arithmetic one or two bits at a time [5, 23J and these algorithms

have straightforward extensions to doing four bits at a time.

The target clock rate of 8OMhz was chosen for several reasons:

1. Distributing an 80MHz clock over a large CMOS chip is an ambitious but feasible

problem to solve.

2. SPICE simulations of the different 4-bit adders indicate that carefully designed 4-bit

adders can achieve this target speed.

CHAPTER 4. HARDWARE DESIGN 67

3. 80MHz is a convenient multiple of 20MHz, the clock rate at which it is expected the

RAP memory and control will run.

Doing floating-point serially is more complicated than serial fixed-point because of the

of the interaction between the exponent logic and the mantissa logic. In particular, once

the exponent and the mantissa of the result have been calculated the number must be

normalized: a normalized number in our numbering system is one in which the mantissa

M satisfies 1/2 S IMI < 1. The mantissa is normalized by shifting it left or right with a

corresponding decrement or increment in the exponent value. This interaction requires that

results of the exponent logic be stored in latches while the mantissa calculation is taking

place. The exponent is then adjusted based on the result of the mantissa calculation. Since

the exponent has to wait for the mantissa calculation to be finished before the adjustment

can be made, there is increased latency. In the case of a floating-point add, there is addi-

tional interaction between the exponent and the mantissa: based on the difference between

the exponents of the two numbers, one mantissa must be shifted before it is added to the

other mantissa. This interaction between exponent and mantissa calculation is the major

cause of complexity in the circuit design.

4.3.1 Floating-Point Adder/Subtractor

The block diagram for the floating-point adder/subtractor is Shown in figure 4.5. Operands

A and B are fed into the unit four bits at a time, exponent first then mantissa, low order bits

first. A start signal initiates the control block which is a large shift register that provides

the control signals to various parts of the circuit. The floating-point add or subtract can

be divided into the three steps listed below, which are illustrated in Figure 4.6 using a four

bit exponent and a twelve bit mantissa.

1. ALIGN STEP. In order to add two floating-point numbers they must be adjusted

to have the same exponent. If the difference between the two operands exponents is

CHAPTER 4. HARDWARE DESIGN 68

ADD

_ .-EXP'-LOGIC
11,01 ADD-EXP-NORM

A COUNT-01 LOW OUT

I MERGE

VARI BLE MANTISSA
DELAY ADD -NORM

j__0_ ADD-MANTISSA T
START

CONTWX

Figure 4.5: Floating-Point Adder/Subtractor Block Diagram

CHAPTER 4. HARDWARE DESIGN 69

Initial Operands

Exponent Mantissa

A: 0010 010000111000

B: 1111 101110100101

After Align Step

A: 0010 010000111000

B: 00 1 0 1 1 1 10l 0l 1 0 0o perandis
sign extend rounded up

* bits

AferAd I

0010 001110101101

After Normalize Steo

0001 011101011010

Figure 4.6: Steps in the Floating-Point Add

CHAPTER 4. HARDWARE DESIGN 70@

EXPDIF the mantissa of the operand with the lowest exponent must be shifted down

EXPDIF bits, dropping the EXPDIF least significant bits and shifting in EXPDIF

sign extension bits, before it is added to the other mantissa. In the block diagram

ADD-EXP-LOGIC subtracts the two exponents and uses the result to control the

DELAY block. The DELAY block performs the alignment of the mantissas so that

they can be correctly added. In the case of adding zero to a non-zero number, the

result should be the non-zero number unchanged. Requiring that the representation

of zero have the most negative exponent guarantees that this will occur. If zero was

allowed to have an exponent larger than the non-zero number, the ALIGN step would

cause the non-zero mantissa to be shifted down and bits would be lost in the final

result.

2. ADD STEP. The adjusted mantissas are added or subtracted in the MANTISSA-ADD

block, roundi4g to the nearest number.

3. NORMALIZATION STEP. The result of the mantissa add or subtract may not be nor- 0

malized and may have to be adjusted. A positive number must have only one leading

0 in the mantissa and a negative number only one leading 1. The COUNT-01 module

counts the leading Os or ls and provides normalization information to the ADD-EXP-

NORM block and the ADD-MANTISSA-NORM block. The ADD-EXP-NORM block

takes the largest of the original exponents and subtracts the number of excess man-

tissa sign bits provided from the COUNT-01 module. The ADD-MANTISSA-NORM

removes the excess sign bits from the mantissa result. In the case that the result of

the MANTISSA-ADD overflows, the exponent is incremented and the correct sign is

added to the mantissa.

Logic is included to take care of overflow and underflow, both in the case where the

operands have already overflowed or underflowed, and in the case that the calculation itself

causes an overflow or underflow. Detailed schematics of the floating-point adder/subtractor

are found in [12).

CHAPTER 4. HARDWARE DESIGN 71

STARTt4
I CONTROL

Figure 4.7: Floating-Point Multiplier Block Diagram

4.3.2 Floating-Point Multiplier

The block diagram for the floating-point multiplier is shown in figure 4.7. Operands A and

B are fed into the unit four bits at a time, exponent first then mantissa, low order bits first.

A start signal initiates the control block in the same way as in the adder/subtractor. The

floating-point multiply can be divided into the two steps listed below, which are illustrated

in Figure 4.8 using a four bit exponent and a twelve bit mantissa.

1. CALCULATE STEP. The exponents are added in the MULT-EXP-LOGIC and man-

tissas are.multiplied in the MANTISSA-MULT. These two operations are independent.

2. NORMALIZE STEP. The result of the mantissa multiply can have one or two extra

sign bits. One extra sign bit occurs because when multiplying two two's complement

mantissas, the full precision result always has an extra sign bit. This sign bit is

dropped and an extra low order bit is added to the mantissa. If there are two extra

CHAPTER 4. HARDWARE DESIGN 72

Initial Ogerands

Exponent Mantissa

A: 0010 010000111000

B: 1111 101110100101

After Calculate Step

0001 1110110110100

extra bits
After Normalize Step

0000 101 101 101000

Figure 4.8: Steps in the Floating-Point Multiply

sign bits, then both extra sign bits are dropped and the exponent is decremented.

Logic is included to take care of overflow and underflow, both in the case where the

operands have already overflowed or underflowed, and in the case that the calculation itself

causes an overflow or underflow. Detailed schematics of the floating-point multiplier are

found in [12].

Mantissa Multiply Algorithm

The algorithm used to multiply the mantissas is an extension of an algorithm described by

Lyon in [23]. This algorithm does multiplication of two two's complement numbers using

Booth encoding [2, 18]. The extensions and modifications to the algorithm include:

1. Doing four bits of each operand at at a time rather than one or two bits at a time.

2. Doing Booth encoding as a separate circuit at the beginning of the multiplier pipeline.

CHAPTER 4. HARDWARE DESIGN 73

X noX X X

y STAGE y STAGE y y STAGE
- 0 0 -- -- am o n-1

PPS-1.1 PPSO-- PPS. PPS(n-2)' RESULT

C _LCTRI,,, CTRI, CTRIk

Figure 4.9: Mantissa Multiply Pipeline

3. Design of a special final stage which eliminates the extra sign bit which occurs when

multiplying two's complemented numbers (there is always at least one extra sign bit

except for the special case when minus one is multiplied by minus one).

Full length multiplication of N bit operands gives results of 2N bits long. Practically, if

the operands are considered as fractions between -1 and 1, this means that the bottom N

bits must be truncated in order to represent the result in an N bit field. In Lyon's algorithm

each partial product and partial product sum is restricted to N bits. Figure 4.9 shows how

the pipeline is set up. Figure 4.10 shows an example of a multiply of two positive binary

fractions, that gives a flavor of how the algorithm proceeds. Each stage of the multiplier

is responsible for generating and adding a partial product (PP) to the partial product sum

(PPS), and is responsible for discarding the bottom bits of this result. In the case that one

bit is done at a time, each stage generates a partial product, adds it to the sum of partial

products coming from the previous stage, and passes this result to the next stage truncated

by one bit. The final stage outputs the N bit result.

Doing two's complement numbers is more complicated because partial products can

be negative, and have implicit sign extension bits that extend infinitely to the left. For

a detailed description of two's complement multiply algorithms and the handling of the

implicit sign extension, the reader is referred to Lyon's paper [23].

CHAPTER 4. HARDWARE DESIGN 74

0.1011
0.1101

0000 PPS-1
101 1 PPO
101 1 PPSO

0 1 01 PPSO' truncate
0000 PP1
0101 PPs1

0010 PPS1' truncate
1 01 1 PP2
1 101 PPS2

01 1 0 PPS2' truncate
1 01 1 PP3

10001 PPS3
1 00 0 PPS3' truncate
0000 PP4

0.1000 RESULT

Figure 4.10: Example Multiply of Two Positive Fractions

xmn Xott

Yin Vout

Figure 4.11: S-implified Multiply Cell

CHAPTER 4. HARDWARE DESIGN 75

Figure 4.11 shows a simplified view of what the multiplier stage looks like. Operands

are shifted in least significant bit first. Each "digit" Yi (which can consist of one, two, or

four bits) of the multiplier gets stored in the ith pipeline stage and generates the ith partial

product by looking at the digits Xi of the multiplicand. The ith partial product then gets

added to the incoming partial product sum. Note that to generate each partial product, the

digit of the multiplier must "see" all bits of the multiplicand e.g. digit Y1 of the multiplier

must get to pipeline stage I before the least significant digit XO of the multiplicand, so

that the correct partial product can be generated. This is a problem if both operands are

being shifted in at the same time with the same delay: any given digit of the multiplier

will never catch up to the digits of the multiplicand that were shifted in before it. To solve

this problem the path of the multiplicand is made to be twice as slow as the path of the

multiplier by inserting an extra delay element. This allows the ith multiplier digit to reach

the ith stage before the least significant digit of the multiplicand. The control signal is used

to control when the Yi digit is latched.

If only a single bit is done at a time, then N stages are required for N bit operands,

one stage for each bit of the multiplier. 11 instead two bits of the multiplier are shifted

in at once, then the logic for these two bits can be combined and the number of stages is

reduced to N/2. Furthermore, doing two bits at once means that modified Booth encoding

can be used. This is a technique in which each partial product to be added is generatei

without requiring another adder, but requires only simple shift and invert operations. The

two bit case can be extended to doing four bits. This is done by taking the four bits of the

multiplier operand, dividing it into two groups of two bits which are each modified Booth

encoded. Then two partial products are calculated, one associated with each of the Booth

encoded fields. -These two partial products are added to the partial product sum in a single

clock cycle, with one partial product being added on the first phase of the clock and the

other one on the second phase. The cell is complicated by the fact that the multiplicand

arrives in groups of four bits, meaning that six bits of each of the two partial product within

a cell are calculated in one clock cycle. Furthermore these partial products overlap by four

CHAPTER 4. HARDWARE DESIGN 76@

Cell Area
Static Register 3706A 2

Shift, Register 2703A 2

Gate 1657A2

Control Shift Register 16218A2

4-bit Adder 48416A2

Table 4.3: Basic Cell Area Estimates

bits. The interested reader is referred to the schematics of [12] for details.

4.3.3 Area Estimates

In order to estimate area, the area for a number of basic cells was determined by laying

them out or by looking at previous layouts. These cells are listed in Table 4.3. In this Table,

the estimate used for the area of a gate is one half the area of an XOR gate, which is larger

than the area required by simple one or two input gates, but smaller than most complex

gates. This estimate is conservative since most of the gates in the circuit are inverters, pass

transistors, 2 input NOR gates, and 2 input NAND gates. The Control Shift Register is a

special register used by the control circuitry, and is estimated to require the area of 6 shift

registers.

For each of the floating-point units, the number of each type of basic cell was counted

and used to give an area estimate for the entire unit. The area of sub-circuits which did

not fit into one of the categories was approximated by looking at how many of the basic

cells would take up the same area. Table 4.4 shows the break up of area for each of the

floating-point units. 20% additional area is included for wiring.

CHAPTER 4. HARDWARE DESIGN 77

Cell Adder/Subtractor Multiplier
Number Area (KA 2) Number, Area (KA2)

Static Register 90 334 33 122
Shift Register 291 787 598 1616

Gate 255 423 370 613
Control Shift Register 43 697 51 827

4-bit Adder 8 387 30 1452
20% Wiring X 526 X 926
Total Area 3.2MA2 5.6MA2

Table 4.4: Floating-Point Unit Area Estimate

4.4 Other Hardware Components

The remaining hardware components of the datapath are the registers and the switch. Input

and output register cells which perform parallel to serial and serial to parallel conversion

respectively are shown in Figure 4.12.

The switch circuitry is shown in Figure 4.13. Precharged lines going to the arithmetic

units are conditionally connected to one of the inputs based on the decoder lines.

4.5 Hardware Improvements

A major disadvantage of the current floating-point unit design is that two problems cannot

be pipelined one immediately after the other. The units have a pipeline latency of 51

clock cycles. This is just over three word times, where a word time is 16 clock cycles and

corresponds to the time required to shift a complete operand into an AU. Ideally it should

be possible to look at the unit as a three stage pipeline, and have three problems in the

unit at once. Currently there must be a two word time gap between when consecutive

problems get fed into the units, leading to a performance which is only a third of that

which is possible.

CHAPTER 4. HARD WARE DESIGN 78

PHI1.-DO WNLOAD PM1

SHF NP111 PH112SHFOU

OUTPUT BUS LlME

b)

GO-

Figure 4.12: a) Input Register Cell b) Output Register CAl

CHAPTER 4. HARDWARE DESIGN 79

-PRECHARGE DECODE.-PRECHARGE

SWITCH
INPUT

ARITHMETIC UNIT
INPUT

Figure 4.13: Switch Crass Point

CHAPTER 4. HARDWARE DESIGN 80

Fortunately, the units can easily be modified to allow this type of pipelining (these

modifications were not implemented due to time constraints). The problem which currently

prevents this type of pipelining is that certain values are stored in register cells (e.g. the

exponent waiting for the normalization step), and the contents of these registers must not

be written over by values coming from the next problem. This problem is solved by having

two levels of storage, and in some cases three levels, so that no information is lost.

In the case of the adder/subtractor, a new variable delay module needs to be designed.

The variable delay is currently designed as a shift register with a variable number of stages:

if the first problem entering is delayed more than the following problem then they will

interfere with each other. The simplest solution to this is to design the variable delay as a

shift register with constant delay, but where the output can be tapped from different points,

thus giving a variable delay. The sign extension logic is moved to the output of this shift

register so that when the most significant bit gets shifted through, all bits thereafter will

be sign extension bits.

4.6 RAP Fixed-Point Prototype

A RAP test chip (Figure 4.14) that does 16 bit fixed-point arithmetic has been designed

by MIT students Stuart Fiske, Josef Shaoul, and Petr Spacek in order to investigate some

of the ideas described above, in particular the idea of having serial arithmetic AUs in

a reconfigurable datapath. The chip was fabricated and tested in MOSIS 3Am Scalable

CMOS technology.

The block diagram of the fixed-point RAP is shown in Figure 4.15. It consists of a

bank of eight 16 bit input registers, twelve 9 bit switch configuration registers, a datapath

consisting of a switch and several AUs, and eight 16 bit output registers. The datapath

is a three stage pipeline, each stage uses four AUs and is connected to the next stage by

a statically reconfigurable sparse crossbar switch, as shown in Figur, 4.16. The A[Us aro

CHAPTER 4. HARDWARE DESIGN 81

16 bit, two-bit serial Arithmetic Units. Each AU takes three operands and is capable of

doing multiplication, addition, subtraction of two of its operands while passing the third

unchanged, or of multiplying two of its operands and adding/subtracting the third.

Operation proceeds as follows: the switch registers are loaded using the bit parallel

input bus and then feed statically into the switch to determine the switch configuration and

the AU functionality. The input registers are also loaded using the input bus, and then

shift serially into the first stage of the switch. Calculations take place as the operands and

intermediate results propagate through the three stages of the datapath, until the results

are shifted into the output registers. Finally, results are unloaded onto the bit parallel

output bus. New input operands can be loaded into the input registers as the operands

from the previous problem are shifting into the datapath, and similarly, the results from

the previous problem can be unloaded from the output registers as results are shifting out

of the datapath. This means problems can be pipelined and a new problem can begin once

every nine clock cycles.

Although the switch setup is different than that of the floating-point RAP, this chip

demonstrates that the switch can be efficiently implemented: about 12% of the total chip

area is devoted to the switch and switch control. This percentage will be much smaller in

the case of the 64 bit floating-point operations because the AUs and registers will be much

bigger.

The chip was tested up to 8.33MHz giving a peak performance of 0.93Mops (Mega

operations per second) per functional unit, and 11.1Mops for the entire chip. Testing speed

was restricted by the limits of the test apparatus used.

CHAPTER 4. HARDWARE DESIGN 82

7 . a 1m - flx fl (f J fl D 0

.41

-- 0 -U 0 0 i U 0 0

Figure 4.14: RAP Fixed-Point Prototype

S CHAPTER 4. HARDWARE DESIGN 83

INPUT OUTPUT
BUS BUS

16 o

16

- ' SWITCH REGISTERS I

INPUTWI
REGISTERS OUTPUT

REGISTERS

ARITHMETIC
UNITS

Figure 4.15: Block Diagram of the Fixed-Point RAP

0 m "n """ i t i I | I

CHAPTER 4. HARDWARE DESIGN 84

STAGE I STAGE 2 STAGE 3
IN - _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ OUT

IN SWITCH 4 ISWITCH 4 SWITCH 4 OUT
REGS AUsJA~ AUs REGS

a)

INPUTS0,,. lOUPT
FROM 3TO

PREVIOUS NEXT
STAGE 3STAGE

7, , , 7U

b)5

Figure 4.16: Fixed Point-RAP Datapath a) Three Stage Pipeline, b) Switch Connectivity
at Each Stage

CHAPTER 4. HARDWARE DESIGN 85

4.7 Summary

This Chapter addressed some of the more important issues of the circuit design of the RAP

datapath. The schematic level design of a 4-bit serial floating-point adder/subtractor and

a 4-bit serial floating-point multiplier has been carried out. The floating-point number

representation used in the design is developed, based on a format consisting in an 8 bit

two's complement exponent field, and a 56 bit, two's complement normalized mantissa field.

Methods for dealing with special conditions such as overflow and underfiow are described.

Based on a study of different 214m CMOS 4-bit adders using SPICE, it is expected that the

floating-point units will run at 80MHz. The current design of the floating-point units has

a performance of 1.57MFlops, while a pipelined design would increase this performance to

4.70MFlops. The area estimate for the floating-point adder/subtractor is 3.2MA2 , and for

the multiplier 5.6MA2 .

"The fixed-point RAP is a chip that was designed to do 16 bit fixed-point arithmetic

using a statically reconfigurable datapath. This chip demonstrates some of RAP ideas

using fixed-point arithmetic.

Chapter 5

Expression Compiler

The future enters into us, in order to transform
itself in us, long before it happens.

RAINER MARIA RILKE, in Letters to a Young Poet

Bless thee, Bottom! bless thee! thou art translated.

SHAKESPEARE in A Midsummer-Night's Dream, III, i, 124

This Chapter describes a compiler that maps an arithmetic expression into a series of

switch configurations (a method) that are used by the RAP to calculate the expression.

The compiler serves several purposes: First, it generates methods for the benchmark ex-

pressions used in Chapter 6 to evaluate the performance of the RAP. The number of switch

configurations required to evaluate each expression determines the performance of the chip.

Second, the compiler allows the performance comparison of different resource configura-

tions: number of functional units available and switch connectivity. Third, the compiler

allows the investigation of different ways in which the compilation process itself can help

improve performance.

S6

CHAPTER 5. EXPRESSION COMPILER 87

Section 5.1 discusses the scheduling problem that the compilation process addresses.

Section 5.2 describes the search algorithm used, including pruning techniques. Finally,

possible enhancements to the compiler and other possible approaches to the problem are

discussed in section 5.3. The compiler is written in Common LISP and the code is found

in [11].

5.1 The Problem

The problem that must be solved is the following: given an expression that contains a num-

ber of add, subtract, and multiply operations, find how these operations can be scheduled

on the functional units in the RAP datapath. Scheduling must take into account the lim-

ited number of functional units and the limited connectivity between the functional units

and the inputs. The problem reduces to a graph matching problem in which the Directed

Acyclic Graph (DAG) [1], representing the expression, is mapped onto the resource graph,

that represents the functional units and their connectivity. In defining the resource graph

it is useful to first define a "level" a level is a snapshot of the datapath state (i.e. which

operations are being computed in which functior 31 units) for a given word time. Each

level has inputs coming from the "previous level" and has outputs that are feeding into the

"next level". The resource graph is a multiple level graph used to represent the use of the

functional units over time. The inputs of a each level are the inputs of the functional units,

the outputs of each level are the outputs of the functional units, and the inputs of each level

are connected to the outputs of the previous level as described by the switch connectivity.

An optimal-schedule is one that requires the smallest amount of time to complete the

calculation. Optimal scheduling with finite resources is a well known NP-complete problem

(13]. However, simple heuristic scheduling methods such as list scheduling have been found

to generate near optimal solutions [10]. The basic idea in list scheduling is to assign priorities

to the nodes in the DAG, based for example on their maximum distance from a DAG output.

CHAPTER 5. EXPRESSION COMPILER 88

Scheduling then proceeds by scheduling as many operations as possible staxting with the

highest priority operations, until resource constraints prevent further scheduling. All nodes

are scheduled in the same way until all tasks have been completed.

The-scheduling problem is hader in the case of the RAP because of the limited connec-

tivity of the switch. A choice of schedule at one level may make it impossible to complete

the calculation of the expression. The limited connectivity eliminates the use of equivalence

classes [1] as a means of simplifying the scheduling task since any two units that have equiv-

alent functionality (there are four adders/subtractors for instance) do not have equivalent

connectivity. Often, at a given level, two values that must be added or multiplied are not

both connected to a common adder or multiplier. This means that the computation must be

delayed and the operands must be fed through feedthroughs. Furthermore, the feedthroughs

used should be chosen so that on the next cycle it will be possible to schedule the operation.

Now if a different set of schedules had been chosen for the previous levels, it is possible that

the extra feedthrough operations would not have been required. This example illustrates

that it is important not only to determine which operations should be scheduled at a given

level, but also which specific units should be used. Fortunately, the limited connectivity

does provide an inherent limitation on the search tree, since many schedules are impossible.

5.2 The Algorithm

The expression compiler does a tree search for possible mappings of an expression onto the

switch. First the expression is transformed into a DAG in which all common subexpressions

have been combined. Then, a depth first search is used that assignes operations to AUs and

intermediate results to feedthroughs until all the final results are available at the outputs

of functional units. This assignment of operations to AUs and intermediate results to

feedthroughs at a given level is referred to as a schedule for that level. If at any point th.,

search gets stuck and can no longer advance (for instance if there are more intermediat.o

CHAPTER 5. EXPRESSION COMPILER 89

results that have to be fed through than there are feedthrough units) the search backs

up to the previous level and tries a new schedule. This continues until a method which

solves the problem is found. If the method found is not optimal, then the search continues

to try and improve on the method already found. A complete search is very expensive

because the problem is exponential and various techniques are used to limit the search as

is discussed in Section 5.2.3. Since the search is limited by heuristics, an optimal solution

is not guaranteed.

5.2.1 An Example

It is useful to look at an example. Suppose the compiler must schedule the three ex-

pressions (*(+ 3 X) (+ Y X)), (* (+ Z Y) (+ Z H)), (*(+ H 2) 4). The compiler first

transforms this list of expressions into a DAG as shown in Figure 5.1. Each node is given

a number, and has pointers to its inputs and to its destination nodes. The compiler then

begins scheduling the operations in time and space: it determines for each word time which

operations are to be scheduled on which functional units.

Figures 5.2 and 5.3 represent output from the compiler. For each word time the level

information is illustrated, which consists of two parts: the schedules of operations that begin

in that word time, and an array showing the current position of all active operations in the

functional units. The three schedules for each word time are the add/subtract schedule, the

multiplier schedule, and the feedthrough schedule. Each entry in the schedule is a pair of

numbers consisting of the node number that is being schedulea (taken from the DAG), and

the number of the functional unit of that type it is being scheduled on. The functional units

of a given type are assigned numbers 0 through (n - 1) where n is the number of functional

units of that type. If an operation has both of its operands ready but cannot be scheduled.

it is assigned to the number n. For instance, in word time 1, nodes 12, 9, 7. and 4 are

scheduled on add/subtract units 0 through 3. Operation 2 is assigned to add/subtract unit

4 which indicates that it has not been scheduied due to the insuffcient number of adders.

CHAPTER 5. EXPRESSION COMPILER 90

0
3 2

X X
4

3
y

7

6 10
INPUTS I-so Z X OUTPUTS

9

8
+

H

12

14
2

X

13

4

Figure 5.1: DAG for the List of Expressions 3 X) (+ Y X)), (+ Z Y) (+ Z H)),
11 2) 4)

CHAPTER 5. EXPRESSION COMPILER 9

Word Time 1:

Adder/Subtractor schedule: (12 0) (9 1) (7 2) (4 3) (2 4)
Multiplier schedule:
Feedthrough schedule: (13 0) (1 3) (0 1)
0 12 NIL NIL
1 13
2 NIL NIL NIL
3 0
4 9 NIL NIL
5 NIL
6 NIL NIL NIL
7 1
8 7 NIL NIL
9 NIL

10 NIL NIL NIL
11 NIL
12 4 NIL NIL
13 NIL
14 NIL NIL NIL
15 NIL

Word Time 2: Word Time 3:

Adder/Subtractor schedule: (2 0) Adder/Subtractor schedule:
Multiplier schedule: Multiplier schedule:
Fsedthrough schedule: (13 0) Feedthrough schedule: (13 0)
0 2 12 NIL 0 NIL 2 12
1 13 1 13
2 NIL NIL NIL 2 NIL NIL NIL
3 NIL 3 NIL
4 NIL 9 NIL 4 NIL NIL 9
6 NIL 6 NIL
6 NIL NIL NIL 6 NIL NIL NIL
7 NIL 7 NIL
8SNIL 7 NIL 8 NIL NIL 7
9 IL 9 NIL

10 NIL NIL-NIL 10 NIL NIL NIL
It NIL 11 NIL
12 NIL 41NIL 12 NIL NIL 4
13 NIL 13 IL
14 IL NIL NIL 14 NIL NIL NIL
15 NIL 1S IL

Figure 5.2: DAG Schedule -part 1)

CHAPTER 5. EXPRESSION COMPILER 92 @

Word Time 4: Word Time 5:

Adder/Subtractor schedule: Ader/Subtractor schedule:
Multiplier schedule: (14 0) (10 1) Multiplier schedule: (S 0)
F~edthrough schedule: (4 3) Foodthrough schedule:

0ONIL NIL 2 0 NIL NIL NIL
1 NIL 1 NIL
2 14ENILINIL 2 6 14 NIL
3 NIL 3 NIL
4 NIL NIL NIL 4 NIL NIL NIL
S NIL S NIL
6 10ONIL NIL 6 NIL 10 NIL
7 4 7 NIL
8 NIL NIL NIL 9 NIL NIL NIL
9 NIL 9 NIL

10 NIL NIL NIL 10 NIL NIL NIL
11 NIL it NIL
12 NIL NIL NIL 12 NIL NIL NIL
13 NIL 13 NIL
14 NIL NIL NIL 14 NIL NIL NIL
15 NIL 1s NIL

Word Time 6: Word Time 7:

Adder/Subtractor schedule: Adder/Subtractor schedule:
Multiplier schedule: Mtultiplier schedule:
Feedthrough schedule: Feedthrongh schedule: (10 1) (14 0)

0ONIL NIL NIL 0 NIL NIL NIL
1 NIL 1 14
2 NIL S 14 2 NILINIL 6
3 NIL 3 10
4 NIL NIL NIL 4 NIL VIL NIL
S NIL 5 NIL
6 NIL NIL 10 6 NIL NIL NIL
7 NIL 7 NIL
8SNIL NIL NIL 8 wIL NIL NIL
9 NIL 9 ONIL

10 IL NIL NIL 10 NIL NIL NIL
11 NIL 11 NIL
12 NIL NIL NIL 12 NIL NIL NIL
13 NIL 13 NIL
14 NIL NIL NIL 14 IL NIL NIL
1S NIL 1S NIL

Figure 5.2: DAG Schedule (part 2)

CHAPTER 5. EXPRESSION COMPILER 93

The second part of the diagram. represents the progress of the operations through the

functional units. Each of the sixteen entries in the table represents a functional unit (A T

or feedthrough) and its state. The state of a functional unit is described by which nodes

in the DAG it it working on. In the case of an adder/subtractor or a multiplier, three

operations can be in progress at once, because of the three word time latency of the units. A

feedthrough only has a latency of one word time. In the diagrams, operations are designated

by their DAG number, and a NIL entry indicates that no operation is in progress. Each

of the functional units of a given type has a position in the overall bank of functional

units. For instance, the adders/subtractors 0 through 3 are in positions 0,4,8, and 12 in

the bank of functional units. In the first word time of the method, nodes 12, 9, 7 and 4

are in the first word delay of the four add/subtract units. Input operands 0, 1 and 13 are

fed through feedthrough units. In the second word time of the method, nodes 12, 9, 7,

and 4 have "advanced" one word time, node 2 is scheduled in an add/subtract unit, and

node 13 is again fed through. At the end of word time 3, results begin to come out of

the adders/subtractors which allows the scheduling of multiply operations in word time 4.

Calculation continues until all results are available at outputs of functional units in word

time 7.

The switch configuration for each level is determined by the schedules for each word time.

The compiler also outputs the schedule as a method that can be used by the RAP simulator.

Information is included as to which input registers are to be loaded with operands, and which

output registers will contain the results.

5.2.2 Sequencing Schedules

A way must be found to sequence through schedules at a given level. When first schedul-

ing a level, the compiler determines all the possible adds, subtracts, and multiplies that

can be done based on the outputs available from the previous level. When scheduling or

rescheduling a level, the add/subtract operations are assigned -o add/subtract units tthis

CHAPTER 5. EXPRESSION COMPILER 94

ADO/SUSTRACT
SCHEDIILES

MULTIPLY
SCHEDULES

FEEDTHROUGH
SCHEDULES

Figure 5.4: Tree of All Possible Schedules for a Level

is called the add/subtract schedule), and the multiplies are assigned to multiply units (the

multiply schedule). Once the operations have been scheduled the intermediate results that

will be needed in later levels can be determined, and scheduled on the feedthrough units

(the feedthrough schedule). Note that the intermediate results that have to be fed through

are dependent on which add/subtracts and which multiplies were scheduled.

In order to sequence through all possible schedules, all combinations of the different

add/subtract schedules, multiply schedules, and feedthrough schedules must be tried. Con-

ceptually, this is shown in Figure 5.4. This Figure is the tree of all the possible schedules at

a specific level. Each add/subtract schedule is tried with each multiply schedule, which in

turn is tried with each feedthrough schedule. This tree is traversed in a depth first fashion.

Note that the size of this tree is is limited by several factors. Sometimes switch con-

nectivity prevents two inputs from getting to the same functional unit. Often a functional

unit is unavailable because another operation has already been scheduled on it. A schedule

0

CHAPTER 5. EXPRESSION COMPILER 95

is also illegal if it causes there to be more intermediate results than there are feedthrough

units. At the very first level, a schedule is valid only if a valid input operand to input

register assignment is possible (i.e. the inputs can be assigned to registers in such a way

that the operation and feedthrough schedules are possible). These factors all contribute to

reducing the size of the tree of possible schedules.

A method is needed to sequence the individual add/subtract, multiply, and feedthrough

schedules. Taking the example of an add/subtract schedule, the sequencing is accomplished

by ordering the add/subtract units, and then for each operation in the add/subtract schedule

assigning the units in order, so that all possible combinations of assignments of units to

operations are covered. Similarly for the multiply and feedthrough schedules.

5.2.3 Limiting the Search

In order for the algorithm to have acceptable runtime behavior, different ways must be found

to limit the search tree. The combinatorial explosion at the first level alone is enough to

render the complete search infeasible. The first level is particularly bad because the complete

flexibility allowed in assigning the input registers means that most of the schedules tried are

possible and should be investigated. As an example, if at the first level the add/subtract

schedule has 8 operations, the multiply schedule has 8 operations, and all 8 feedthrough

units will be needed, then the number of schedules at the first level is over 1.74 x 10". The

problem is not nearly as bad at other levels since their inputs are fixed by the outputs from

the previous level and the switch connectivity limits the schedules that are possible.

The following algorithmic methods are used to prune branches of the search tree:

1. A branch-and-bound search is used [33, 37]. Once a solution has been found, a lower

bound of the required remaining levels is used to prune al branches that cannot lead

to a better solution than the one already found e.g. i1 it is known that continuing

CHAPTER 5. EXPRESSION COMPILER 96

the search along a given branch will at best require six more levels to complete the

calculation, and the method that has already been found requires six or less more

levels, then there is no point in continuing the search along that branch. The lower

bound used is the maximum depth of an unscheduled node from an output of the

DAG, times the number of level delays required to complete a single computation.

2. Branches in which no activity is occurring are eliminated. If the search gets into a

state in which it continuously feeds through intermediate results without doing useful

work, this is detected and corrected.

3. A lower bound of the best possible number of configurations the DAG can be mapped

into is calculated, and if this optimal number is achieved, the search is stopped.

The following heuristic methods were used to guide the search and prune branches from

the seach tree:

1. Operations are prioritized. Each operation is assigned a priority based on its maximum

distance from any output of the DAG. This priority is used to help decide which

operations to schedule first.

2. Greedy scheduling of operations is used. If there is a functional unit which an oper-

ation can be scheduled on (because no other operation has been scheduled on it and

because the input operands are connected via the switch) then it will be scheduled.

If greedy scheduling is not done many branches are searched in which although an

operation can be scheduled, it is not scheduled, but rather the operands are sent to

feedthfough units. There are pathological cases where this is in fact desirable but

they are rare in typical mathematical expressions. Greedy scheduling at the first level

is optional because there are cases where requiring greedy scheduling at the first level

makes the input register assignment impossible.

3. When scheduling the first level, the number of feedthrough schedules attempted for a

CHAPTER 5. EXPRESSION COMPILER 97

specific add/subtract and multiply schedule is artificially limited. As mentioned pre-

viously, the great flexibility at the first level is a major contribution to the complexity

of the problem. Most of the time it is an incorrect assignment of the add/subtract

or multiply units at the first level that prevents a better method being found. Ex-

amining all possible ways of assigning the feedthrough units when the add/subtract

or mu tiply assignments are non-optimal is unproductive. A non-optimal feedthrough

assignment at the first level is easier to correct for in subsequent levels.

4. The number of different valid schedules examined is artificially limited. A valid sched-

ule means any schedule at any level which is looked at because it may lead to a better

solution. The behavior of the algorithm is such that the depth first search usually

quickly finds a method that will do the computation, though this is not usually the

optimal solution. It then spends time backtracking and trying to find a better solu-

0 tion. Limiting the number of valid schedules examined limits the time spent in trying

to improve the answer. This is similar to a time limited chess program that cuts its

search short and returns the best answer found so far.

Although not currently implemented in the compiler, there is a fallback position if a

method is not found for an expression. It involves breaking up the expression DAG into

smaller subDAGs and scheduling the subDAGs. This is similar to the register allocation

problem in which if there are not enough registers to hold all intermediate results. the

fallback position is to store values in memory.

5.3 Other Enhancements and other Approaches

A number of other enhancements to the compiler are possible but have not been imple-

mented. These enhancements improve performance in terms of running time and in terms

of the quality of the methods found:

CHAPTER 5. EXPRESSION COMPILER 98

1. Expression Pre-Processing. Include a pre-processing step in which the expression

graph is rearganized to minirize its depth and its resource requirements. This reor-

ganization step would use the associative, commutative, and distributive properties to

do Arithmetic-Expression Tree-Height Reduction as suggested by Kuck [20, 19]. This

type of reorganization can lead to speedups of at most O(n/logn). Two examples of

the benefits of doing this reorganization are:

* Accumulation Trees. Many of the loops involve accumulating a result into a single

vaiiable by adding one partial result to the total at each iteration. To exploit

the pacallelism available on the RAP these are broken up into accumulation

trees, as shown in Figure 5.5 in the case of a sum accumulate. In the case that

intermediate results of an accumulate function are needed (e.g. each partial sum),

adding redundant operations permits the use of an accumulate tree to speed up

the overall computation. This is shown in Figure 5.6.

a Eliminate Common Subexpressions. The compiler currently combines common

subexpressions which are exact duplicates of each other. It is possible to use

the distributivity and associativity of operations to find other ways to simplify

the expression. For instance, Figure 5.7a is simplified by the compiler to Figure

5.7b but could be simplified to Figure 5.7c using the distributivity property of

the multiply operation. This must be used with caution since eliminating all

common subexpressions may not be advisable if the goal is to minimize graph

depth.

2. Redundant Operations. The compiler can use unused functional units to do redundant

computations which would improve the schedulability of the following levels. For

instance, if a value is fed through two different feedthrough units it will be accessible

to more functional units as an input at the next level. The same is true if an add or

a multiply is done twice.

CHAPTERS. EXPRESSION COMPILER 99

12

13

14

15 + our

17

12

13

14 OUT

+

17

Figure -5.5: An Accumalation Tree

CHAPTER 5. EXPRESSION COMPILER 100

- 133
4 J+ OUT4

144/ 1"5} OUT5

117

OOUT4

OUTS

'OUT
,14

Figure 5.6: Accumulation Tree with Redundant Operations

. CHAPTER 5. EXPRESSION COMPILER 101

EXPRI£x~ax

EXPR2

EXPRI

EXPR3

a)

EXPR1 EXPRI

EXPR2
+ x

EXXPR2

C)
b)

Figure 5.7: a) Unsimplified DAG b) DAG with Common Subexpressions Combined c) DAG
Simplified Using the Distributivity Property

CHAPTER 5. EXPRESSION COMPILER 102

3. Redundant Input Variables. In some cases loading an input operand into more than

one input register can allow operations to be scheduled that could not otherwise be

scheduled. This increases the bandwidth requirements of the computation but can

also increase floating-point performance.

4. If the switch/functional unit combination exhibits some form of symmetry, then this

can be exploited at the first level to prevent the examining of schedules that are

equivalent. This symmetry cannot be exploited at other levels because the symmetry

is broken by the fact that inputs to the level are fixed by the previous level.

Completely different approaches are possible than the search algorithm used. Possibili-

ties include:

1. Do the search backwards starting from a scheduling of the outputs.

2. Introduce critical path analysis and begin by scheduling the critical path, attempting

to fit in the other computations around the already scheduled operations.

3. Rather than searching for the methods, attempt to match expressions to common

expression patterns for which mappings onto the switch are known.

Further study is needed to determine the feasibility and the performance benefits, if

any, of these approaches.

5.4 Summary

In order to use the RAP datapath, a compiler has been written that maps a mathematical

expression into a series of switch configurations that perform the calculation. The compiler

schedules operations on the finite resources of the RAP. The compiler allows the specification

CHAPTER 5. EXPRESSION COMPILER 103

of the RAP resources including the number and type of functional units, and the switch

connectivity.

Finding an optimal schedule for the operations is an NP-complete problem. For this

reason, the approach used in the compiler is to do a depth first search using algorithmic

and heuristic methods to guide and limit the search. The most important of these are the

prioritizing of operations based on their maximum depth from a DAG output, the greedy

scheduling of operations, the use of a calculated lower bound to limit the search, and the

artificial limiting of the number of schedules examined.

Chapter 6

Performance

Be not swept off your feet by the vividness of the impression,
but say, "Impression, wait for me a little. Let me see what

you are and what you represent. Let me try you."

- EPICTETUS, in Discourses, bk. II, ch. 18

We should be careful to get out of an ezperience only
the wisdom that is in it - and stop there; lest we be like
the cat that sits on the hot stove lid. She will never sit

down on a hot stove lid again - and that is well; but
also she will never sit down on a cold one any more.

- MARK TWAIN in Following the Equator, vol. I,
Pudd'nhead Wilson's New Calendar, ch 11 (1897)

In this Chapter, performance of the RAP is evaluated using the simulator of Chapter

3 and the expression compiler of Chapter 5. Performance is evaluated by taking a number

of mathema.ical expressions from the inner loops of computationally intensive programs.

mapping them onto the RAP using the expression compiler, and simulating the operation

of the RAP lising the simulator. Performance is evaluated from two points of view: first of

104

*

CHAPTER 6. PERFORMANCE 105

all from the point of view of the bandwidth reduction achieved over the case in which no

locality is exploited, and secondly from the point of view of the rate of computation achieved

in Miflions of Floating-Point Operations per second (MFlops). For the problems evaluated

the bandwidth that has to be provided to the datapath to achieve a given performance is

reduced on average by 64%. The average floating-point performance for these problems is

3.40MFlops.

This Chapter is organized as follows: in section 6.1 the assumptions made and the

benchmarks used in the performance evaluation are described. Sections 6.2 and 6.3 deal

with the bandwidth performance of the RAP and floating-point performance of the RAP

respectively. Section 6.4 discusses what factors limit the performance achieved, and finally

section 6.5 looks at various ways in which the RAP performance can be improved.

6.1 Evaluation Method

6.1.1 Assumptions

Performance figures assume a minor cycle of 12.5ns, a major cycle of 50ns, an input band-

width of 400Mbit/sec, and an output bandwidth of 400Mbit/sec [9]. A word time is extended

to five major cycles from four major cycles because one extra cycle is needed every word time

to change the switch configuration. The latency of a single floating-point adder/subtractor

or multiplier is three word times or 15 major cycles, and the units are assumed to be

pipelined, such that peak performance is 4MFlops for each unit. The feedthrough units

have a latency of one word time. The overhead in handling messages is determined by the

implementation of the RAP control and is simulated by the simulator.

CHAPTER 6. PERFORMANCE 106

6.1.2 Benchmarks

The expressions used as benchmarks are derived from a number of numerically intensive

problems involving many adds, subtracts, and multiplies. They were taken from a number

of common problems such as circuit simulation, signal processing, hydrodynamics, and

common vector and matrix computations. The programs used in the set of Livermore Loop

benchmarks [271 are drawn upon extensively. Typically the expressions are found in the

innermost loop of these programs and must be executed many times each time the program

is run.

A number of techniques are used to help map the expressions onto the switch and to

increase performance:

1. Loop Unrolling. If the innermost loop is simple, then a number of loop iterations are

mapped onto the RAP at the same time.

2. Loop Decomposition. If the expression in the innermost loop is too large, then the

expression or expressions must be broken up into several different messages to be sent

to the RAP.

3. Expression Pre-processing. Some of the benchmark DAGs are "pre-processed" using

the techniques suggested for improving the compiler in Chapter 5. The techniques

used included the use of accumulation trees (including redundant operations), and

redundant input variables.

The benchmarks used along with the details of how they were mapped onto the RAP

are shown in table 6.1. The benchmark expressions are found in [11].

CHAPTER 6. PERFORMANCE 107

Benchmark Comments
bm-vectsum Vector sum of two vectors of dimension 8.
bm-accum Accumulate of 16 numbers in a sum.
bm-accum2 Accumulate of 16 numbers in a sum and

in a multiply at the same time.
bm-2x2fft A 2x2 FFT.
bm-22x2fft Two 2x2 FFTs computed at the same time.
bm-4x4fft A 4x4 FFT. Two extra operations introduced to

allow adder units to act as feedthroughs.
bm-vandp An iterative solution to Van Der Pol's equation.
bm-poly6 Calculation of a polynomial of degree 6.
bm-ids formula for the non-saturation drain

to source current in a MOS transistor.
bm-livl Hydro excerpt, loop unrolled 3 times.
bm-liv2 Incomplete Cholesky Conjugate Gradient,

loop unrolled 3 times.
bm-lUv3 Inner Product, accumulate tree used.

Note: Livermore loop 6 has the same form.
bm-lv4 Banded Linear Equations, loop unrolled 5 times.
bm-Uv5 Tri-Diagonal Elimination, loop unrolled 4 times.
bm-liv7 Equation of State Fragment.
bm-liv8 A.D.I Integration, one expression from main loop.
bm-livlO Difference Predictors, Accumulate tree

and 6 redundant operations used.
bm-llvll First Sum, loop unrolled 10 times, Accumulate tree

and 7 redundant operations used.
bm-liv12 First Difference.
bm-liv18 2-D Explicit Hydrodynamics Fragment,

one expression from main loop.
bm-liv19 General Linear Recurrence Equation,

loop unrolled 3 times.
bm-liv2l Matrix*Matrix Product, loop unrolled 15 times,

Accumulation tree used.
bm-liv23 2-D Implicit Hydrodynamics Fragment

Table 6.1: Benchmarks used to Evaluate Performance

CHAPTER 6. PERFORMANCE 108

6.2 Bandwidth Performance

The main goal of the RAP is to use the locality found in mathematical expressions to

reduce the bandwidth required to sustain high rates of floating-point computation. For the

benchmarks studied the bandwidth required to sustain a given level of computation was

reduced on average by 64% from the bandwidth required if no locality is exploited.

Table 6.2 summarizes the bandwidth requirements of the different benchmarks. For

each problem the table shows the number of operations performed, the number of input

and output words, and the number of configurations in the method. From these figures

the I/O bandwidth required is calculated and compared to the maximum bandwidth that

this calculation requires if no locality is exploited, to determine the reduction in bandwidth

achieved by using the RAP.

The I/O bandwidth required depends on the locality inherent in the problem. For

instance the vector sum benchmark, bm-vectsum, consists of a number of independent op-

erations and has no locality that can be exploited by the RAP so there is no bandwidth

advantage in using it (in fact if overhead is included, using the RAP is more costly). The

situation is similar in the case of the bm-isv4 and bm-livil benchmarks. Except for the

above mentioned three cases the bandwidth required for all the problems has been reduced

to within the capacity of the network.

The bandwidth requirements also depend on how good a mapping the expression com-

piler found for the benchmark. The longer the method, the less bandwidth is required to

sustain the computation and vice versa. However, the percentage savings of bandwidth is

independent of the length of the method used.

Note that the I/O bandwidth required will increase slightly because of communication

and message overhead. The percentage cost of this overhead depends on how many sets of

operands are sent in a single message.

___ _________ ____ __ ____ _

CHAPTER 6. PERFORMVANCE 109

1 /0 Words 1/0 Maximum %
Benchmark Ops (input + Configs. Bandwidth Bandwidth Bandwidth

__________output) I ____ Required Required Savings

bm-vectsuxn 8 16 + 8 4 l536Mbit/s l536Mbit/s 0 %

bm-accum 15 16 + 1 14 3llMbit/s 823Mbit/s 62%
bm-accum2 30 16 + 2 16 288Mbit/s l44OMbit/s 80%
bm-2x2fft 10 6 +4 12 2l3Mbit/s 64OMbit/s 67%

b M-22x2fft 20 12 +8 17 3OlMbit/s 9O4Mbit/s 67%

bm-4x4fft 36 15 + 8 18 327Mbit/s l536Mbit/s 79%

bm-vandp 20 8-+ 4 26' llSMbit/s 591Mbit/s 80%

bm-poly6 16 8 + 1 23 lOOMbit/s 534Mbit/s 81%

bm-ids 9 8 + 1 14 l6SMbit/s 494Mbit/s 67%

bm-livl 15 10 +3 16 2O8Mbit/s 720Mbit/s 71%
bm-liv2 12 13 +3 10 4l0Mbit/s 922Mbit/s 56%

bm-liv3 15 16 + 1 14 3llMbit/s 823Mbit/s 62%

bm-liv4 10 15 +5 8 64OMbit/s 960Mbit/s 33%
bm-liv5 8 9 +4 25 l33Mbit/s 246Mbit/s 46%

bm-liv7 16 12 + 1 24 l39Mbit/s 5l2Mbit/s 73%
bm-l1v8 12 12 + 1 19 l75Mbit/s 495Mbit/s 64%

bm-livlO 15 10 + 10 15 34lMbit/s 768Mbit/s 56%

bm-livll 17 12 + 10 15 375Mbit/s 87OMbit/s 57%

bm-livl2 11 12 + 11 5 ll78Mbit/s l69OMbit/s 30%
bm-11v18 13 12 + 1 23 l45Mbit/s 434Mbit/s 67%

bm-livl9 9 7 +6 30 lllMbit/s 23OMbit/s 52%

bm-liv21 15 16 + 1 18 242Mbit/s 64OMbit/s. 62%

bm-liv23 11 _11 + 2 22 151Mbit/s 384Mbit/s 61%

Average 15 _12 + 4_ 17 244Mbit/s 682Mbit/s 64

-Table 6.2: RAP Bandwidth Performance

CHAPTER 6. PERFORMANCE 110

6.3 Floating-Point Performance

The floating-point rate attained on the benchmarks is the second key element of the RAP

performance. Assuming pipelined floating-point units, with a latency of 15 major cycles,

each adder/subtractor and multiplier can sustain a computation rate of 4 MFlops, giving

a peak performance rate of 32 MFlops for the entire chip. For the benchmarks the average

performance was 3.40MFlops and ranged from between 1.20MFlops to 8.80MFlops. On

average 11% of peak power was used. The reasons for this low utilization of resources are

discussed in section 6.4.

Table 6.3 summarizes the performance results for the different benchmarks. For each

problem the table shows the number of operations performed, the number of switch config-

urations in the method, and the resulting MFlops performance. Note that for benchmarks

bm-4z4fft, bm-livlO, and bm-livll in which redundant operations have been introduced, the

redundant operations are counted in the number of operations column, but are not counted

when calculating the performance. The latency column refers to the time from when one

problem instance is in the input buffer to when the complete result is in the output buffer

and includes all control overhead. Table 6.4 shows the maximum achievable performance

that is possible given infinite resources (i.e. unlimited switch connectivity and as many

units of a specific type as are required), and the performance achievable if the same num-

ber of functional units is maintained but the switch is a complete switch. These figures

are compared to the performance actually achieved: on average the limited switch used

achieved 82% of the best possible performance and 88% of the performance achieved with

a complete switch.

CHAPTER 6. PERFORMANCE 111

#
Benchmark Ops. Configs. MFIops Latency

bm-vectsum 8 4 8.00 2.90ps
bm-accum 15 14 4.29 5.05ps

bm-accum2 30 16 7.50 5.60ps

bm-2x2fft 10 12 3.33 4.20ps

bm-22x2fft 20 17 4.71 5.951sS

bm-4x4fft 36 18 7.56 6.35us

bm-vandp 20 26 3.10 7.80,us

bm-poly6 16 23 2.78 6 .90ps

bm-ids 9 12 3.00 4.50ps

bm-livl 15 16 3.75 -5.3514s

bm-Iiv2 12 10 4.80 4.0014s

bm-liv3 15 14 4.29 5.05ps

bm-liv4 10 8 5.00 3.70ps
bm-liv5 8 25 1.28 7 .60ps

bm-liv7 16 24 2.67 7.35ps

bm-liv8 12 19 2.53 6.10ps

bm-livlO 15 15 2.40 5.4 5ps

bm-livl1 17 15 2.67 5.55us
bm-livl2 11 5 8.80 3.10ps

bm-liv18 13 23 2.26 7.10us

bm-livl9 9 30 1.20 8.851sS

bm-liv21 15 18 3.33 6.05jis

bm-liv23 11 22 2.00 6.85ps

Average 15 17 3.40 5.71j.s

Table 6.3: RAP Floating-Point Performance

CHAPTER 6. PERFORMANCE 112

Infinite Complete
Benchmark Resources Switch Actual Switch

MFlops MFlops MFlops % of optimal % of complete
switch

bm-vectsum 10.67 8.00 8.00 75% 100%
bm-accum 5.00 4.62 4.29 86% 93%

bm-accum2 10.00 9.23 7.50 75% 81%
bm-2x2fft 4.44 4.44 3.33 75% 75%

bm-22x2fft 8.89 8.00 4.71 53% 59%
bm-4x4fft 15.11 9.07 7.56 50% 83%
bm-vandp 3.33 3.33 3.10 93% 93%
bm-poly6 3.56 3.56 2.78 78% 78%

bm-ids 3.00 3.00 3.00 100% 100%
bm-livl 5.00 4.62 3.75 75% 81%
bm-liv2 5.33 4.80 4.80 90% 100%
bm-liv3 5.00 4.62 4.29 86% 93%
bm-lUv4 6.67 5.71 5.00 75% 88%
bm-liv5 1.33 1.33 1.28 96% 96%
bm-liv7 2.67 2.67 2.67 100% 100%
bm-liv8 3.20 3.20 2.53 79% 79%
bm-livl0 3.00 2.78 2.40 80% 87%
bm-livll 3.33 3.08 2.67 80% 87%
bm-liv12 14.66 8.80 8.80 60% 100%
bm-livl8 2.88 2.88 2.26 78% 78%
bm-livl9 1.33 1.33 1.20 90% 90%
bm-liv2l 4.00 3.75 3.33 83% 89%
bm-liv23 2.10 2.00 2.00 95% 100%
Average 4.13 3.88 3.40 82% 88%

Table 6.4: Comparison of Actual Performance to Ideal Performance

4

CHAPTER 6. PERFORMANCE 113

6.4 Limits on Performance

6.4.1 Limits on Bandwidth Performance

The amount by which the RAP is able to reduce bandwidth requirements is limited by two

factors: the structure of the computation to be performed, and the current control scheme

which does not allow exploitation of locality outside of the calculation of an individual

expression.

The structure of the computation determines how much locality is present in the expres-

sion to be exploited by the RAP. If the computation calculates many intermediate results

that get combined to give the final results, then the RAP will be very effective in reduc-

ing the overall bandwidth requirements. If on the other hand the expression is a series of

independent adds, subtracts, and multiplies, the RAP will not be as effective.

In the RAP, locality is exploited within an expression but not between expressions. All

calculations are modular in that the input operands are sent to the RAP, the calculation ;s

performed, and the results are sent to a predetermined destination. No provision is made for

different calculations to share their input variables or their output results. For instance, an

expression might use the same constants all the time, but the RAP requires that each time

the expression is calculated the constants be sent as input variables. As another example,

consider the case of accumulating 256 numbers in a sum. This is done as follows: the RAP

first does 16 accumulates of 16 numbers, these 16 intermediate results are gathered together

at an MDP, which then sends another message to the RAP to do the final accumulate. If

the RAP had mechanisms for storing its outputs results and using them as inputs later,

then the bandwidth costs of sending the intermediate results to the MDP and receiving

them back would be eliminated.

CHAPTER 6. PERFORMANCE 114

6.4.2 Limits on Floating-Point Performance

The limitations on the floating-point performance achievable by the RAP are due to the

structure of the computation to be performed, the latency of the AUs, and to the resource

limitations of the RAP.

First of all, the computation is limited by the data dependencies of the problem: op-

erations which take inputs from other operations cannot be started until the results from

these other operations are available. Even with infinite resources the maximum depth of

the expression DAG that represents the computation determines the minimum number of

configurations that will be required to complete the computation. Furthermore, most com-

mon computations have a binary treelike structure, which have lots of operations to do

at the beginning (at the leaves of the tree), buL have many less operations to do as the

computation progresses towards the final result (the root of the tree). This means that

typically the AUs will be used heavily at the beginning of a computation but will be mostly

idle towards the end of the computation (note that there are exceptions to this generaliza-

tion: The FFT expressions have as many operations at the last level of their DAG as at

the intermediate levels). These data dependency limitations prevent the RAP from being

used at even close to peak performance: the best performance that can be achieved for the

different benchmarks is given in the last column of Table 6.3.

The three word latency of the AUs compounds the data dependency problem: the

computation can never complete faster than the maximum depth of the DAG times the

latency of the AUs. Reducing the AU latency will lead to increased performance.

Resource constraints also limit performance. RAP resources include the number and

distribution of each type of functional unit, and the switch interconnectivity. Ofte 1 , the

computation would proceed faster if there were only more adders or multipliers available.

or if the switch had extra connections allowing inputs to reach the same functional unit,

or if extra input registers or feedthrough units were available. Comparing the MF!ops

CHAPTER 6. PERFORMANCE 115

actually achieved to maximum possible achievable in Table 6.4 provides a figure of merit

for the RAP resources and the expression compiler. For the benchmarks used the RAP

achieved 82% of the maximum possible performance for that problem. and 88% of the

performance achievable if the switch is complete. As is discussed in section 6.5, changing

the resource configuration may lead to better performance. For the problems considered.

allowing unlimited switch resources (i.e. having a complete switch) means that the RAP

would achieve 91% of the maximum achievable performance. This means that if the compiler

is assumed to generate the best method for the given resources (this is a good approximation

for the switch considered) then 53% of the performance degradation from the ideal case can

be attributed to the limited switch connectivity, and the remaining 47% to the limited

number of functional units. This suggests that the limited switch and the limited number

of functional units are about equally responsible for the performance degradation from the

ideal case.

6.5 Improving Performance

6.5.1 Finding Better Methods

Throughout the discussion on mapping expressions to switch configurations in Chapter 5,

a number of ways of to improve the methods found were suggested, and it is important to

see how these relate to the factors that limit the performance as discussed in section 6.4.

Two mechanisms can be used to increase resource utilization and limit the effect of data

dependencies:

. Map more than one expression onto the switch at once so that utilization of the

functional units increases. In a number of the benchmarks studied, this was done

by unrolling loops see Table 6.3) but it can also be done my mapping compieteiv

CHAPTER 6. PERFORMANCE 116

independent expressions onto the switch. The extent to which this mechanism can be

used is limited by the number of input registers and functional units available.

2. The DAG that represents the computation can be rearranged to minimize its depth.

as discussed in Chapter 5.

Mechanisms also exist which can reduce the effects of resource constraints:

1. Idle functional units can be used to do redundant operations and feedthroughs which

will improve the schedulability of the following levels. If a result of a given node is

available in more than one place, the incomplete connectivity of the switch can be

masked more effectively.

2. Input operands can be loaded into more than one input register if some of the input

registers are unused. The effect is the same as doing redundant operations on un-

used functional units. Note that under the current control scheme this means input

bandwidth requirements will also increase.

6.5.2 Using Different Resource Configurations

There are two dimensions of the RAP datapath that have an effect on the RAP performance:

the number of each type of functional unit, and the switch connectivity.

The optimal number of each type of functional units depends on the problem. Currently.

there are four add/subtract units and four multiply units. However, many problems have

more adds than multiplies so that having more add/subtract units than multiply units ma'

be advantageous. This is highly problem dependent, and a more careful study is needed

to determine whether an asymmetry in the number of functional units is desirable. This

choice is also limited by practical considerations, such as how much silicon area each tyvp.

CHAPTER 6. PERFORMANCE 117

of functional unit requires (e.g. it is easier to add another feedthrough unit than it is to

add an add/subtract unit or a multiply unit).

The switch connectivity is a variable which has an effect on performance. For instance.

the methods found by the compiler for the benchmarks could in many cases be optimal if

only the switch connectivity had been different. The advantage of the current switch is that

it is symmetric and offers equal loading on all the input lines. The choice of this switch

however was somewhat arbitrary, and the question that must be answered is whether there

are certain characteristics that are desirable in the switch. In trying to map expressions

onto the switch, two desirable properties of the switch have become evident:

1. Embedded Trees. Since the expressi,-is computed on the RAP typically have the

shape of binary trees, being able to map trees onto the switch is a desirable property.

A simple example of this is the case of the accumulate benchmark bm-accum, that

takes 14 configurations rather than the optimal 13 configurations (13 is optimal in the

case that only four adders are present, whereas 12 is optimal if unlimited resources are

assumed). The extra configuration is required because at one point in the computation

values have to go through feedthroughs so that the two operands can both reach the

same adder. If the accumulation tree could be mapped directly onto the switch without

the extra feedthrough stage, then the performance would be improved.

2. Wide Fanout. It is desirable to have some inputs that are fanned out to many of

the functional units. In many ,.ses a result is needed in more than one place and

must be fanned out to multiple units. In ^.Le case of the switch used for performance

evaluation, a given output can only reach two adders and two multipliers. If a third

add or multiply using that value is ready to begin, it will be delayed and the value

w*ll have to go through a feedthrough until an adder it can reach is available.

In order to experiment with improving performance by changing the switch configura-

tion, the switch of Figure 6.1 was used with the compiler -f ,ChaDter 5. This switch looks

CHAPTER 6. PERFORMANCE 118

rather irregular but it has the following interesting properties: the inputs 0, 1, and 2 fanout

to all the AU units, and most trees can be directly mapped into a succession of switch config-

urations that do not include unnecessary feedthroughs. Unfortunately, this irregular switch

makes it so that the compiler has to search a lot longer to find a good solution, because

although the optimal solution is possible, there is usually only one optimal solution. This

argues in favor having a more complete switch or a compiler that is more aware of switch

structure: the search could be directed towards matching common expression patterns for

which the optimal sequence of switch configurations is known.

6.5.3 Pipelining RAPs

RAPs can be used in a pipeline in which each RAP does part of the computation and passes

intermediate results to the next RAP for the next part of the computation. Pipelining

increases performance by allowing more than one RAP to work on the same problem. For

example, if one RAP does the first half of the configurations in a method and then passes

intermediate results onto the next RAP which executes the second half of the configurations

of the method, then overall performance can be increased by a factor of two. As in any

pipeline, balancing the stages of the pipeline is important: each RAP in the pipeline should

have the same amount of work to do i.e. the same number of configurations. Also, the

network is an important part of the pipeline since between every two RAP stages there is a

network stage. Matching the network speed to the RAP speed is an important consideration.

To achieve balance, each method should have sufficient configurations to keep the RAP busy

without overloading the network, and few enough for the RAP to keep up with the network.

Table 6.5 shows how many configurations in a method would be ideal, given the number

of input operands. The minimum number of configurations that does useful work is three.

the latency of one operation. Note these figures assume an unloaded network: if there is

other traffic on the network the I/O bandwidth will decrease, the time for a complete set of

operands to arrive, and the ideal number of configurations per method will both increase.

CHAPTER 6. PERFORMANCE 119

INO2X a 0.,23.4.8PZT

- O T I M U 10 .1 ,2 , 3 , , ,

1N15 MUX

Fiue .:AnAtrntv Sic

CHAPTER 6. PERFORMANCE 120

Time for a set of Best Number of
Operands operands to arrive Configurations

1 160us 3
2 320ns 3
3 480ns 3
4 640ns 3
5 800ns 3
6 960ns 4
7 1.12ps 4
8 1.28 s 5
9 1.44ps 6

10 1.60/us 6
11 1.7614s 7
12 1.92 1As 8
13 2.08pus 8
14 2.24is 9
15 2.4Os 10
16 2.56ps 10

Table 6.5: Optimum # of Configurations per Method vs. Number of Input Operands

For those computations which have long methods, dividing the computation into a

pipeline over several RAPs is advantageous. This requires finding the right place to break

up a method. Any mismatch in speed between the network and the RAP can be somewhat

compensated for by the input and output buffers, but in the worst case may back up the

network.

6.5.4 Reorganizing Control and Operation of the Data Path

Reorganizing how the RAP datapath is controlled can lead to both improved bandwidth

performance, and to improved floating-point performance. This is achieved however at the

cost of increased complexity in the control. The extra performance gained by these schemes

must be carefully measured against the extra cost in complexity.

CHAPTER 6. PERFORMANCE 121

Decreasing Bandwidth Requirements

A very simple idea for reducing the bandwidth required for many expressions is to include

constants in the expression as part of the method definition. This means that the constants

do not have to be sent as input operands every time the method is calculated.

A more difficult idea to implement is to give the RAP a more general addressing capa-

bility that would allow it to store the input operands and the results of its computations

in memory, and to combine these stored values in subsequent computations. This offers

the possibility of further decreasing the off chip bandwidth but would require a substantial

increase in control complexity.

Increasing Floating-Point Performance

The control scheme of the RAP datapath is currently set up in a way that minimizes com-

plexity. Problems are loaded one at a time, and only one problem can be in the functional

units at a time. Allowing only one problem to be calculating at a time means that for

the common tree structure, lots of work is done at the beginning of the computation (at

the leaves of the tree) but as computation progresses utilization of the functional units

decreases, and the floating-point performance decreases.

Performance can be increased by using different control schemes that relax the constraint

of having only one problem calculating at once. If the feedthroughs are extended to have

three word delays, and the datapath is considered as three different machines that can

calculate three different problems, then performance can be increased by a factor of three

if there is sufficient bandwidth. In this scheme the overall performance increases, but the

speed of calculation of one particular expression decreases. Alternatively, the methods could

be compiled so that when doing calculations on many sets of operands, computation on one

set of operands begins before the calculation on the previous set completes. This similar to

software pipelining in VLIW machines f21] in which iterations of a loop in a program aro

CHAPTER 6. PERFORMANCE 122

initiated at constant intervals, before the preceding iterations complete. In the case of the

tree structure, this means that another tree begins to calculate just as the previous tree is

beginning to have less work to do, and thus resource utilization increases.

6.6 S umary

There are two aspects of the RAP performance that are important: the bandwidth required

to sustain a given level of computation, and the floating-point performance achieved. 23

benchmarks consisting in mathematical expressions taken from the inner loops of compu-

tationally intensive programs were used to evaluate performance.

The RAP reduces I/O bandwidth that must be provided to the datapath by 64% when

compared to the bandwidth required if no locality is exploited. The amount bandwidth

is reduced by is limited by two factors: the locality present in the benchmark, and the

fact that the RAP does not allow sharing of input variables or results between different

expressions.

The RAP achieves an average floating-point performance of 3.40MFlops over the 23

benchmarks. This performance corresponds 82% of the performance achievable if infinite

resources were available, and to 88% of the performance achievable if the number of units

is limited but a complete switch is used. The floating-point performance is limited by

the amount of parallelism present in the calculation, by the AU latency, and by resource

constraints.

Numerous schemes can be envisioned for improving performance. Bandwidth perfor-

mance can be improved by allowing constants to be included as part of the RAP, and by

allowing the RAP to use on chip memory to exploit locality beyond the expression level.

Floating-point performance can be improved in several ways. Better methods can be found

by improving the compiler, and by improving the resource configuration to allow good map-

CHAPTER 6. PERFORMANCE 123

pings to be found more easily. The RAP control structure could be changed to allow more

than one problem to be computing at one time. Also, floating-point performance can be

increased at the system level by pipeining RAPs.

Chapter 7

Conclusion

No thing great is created suddenly, any more than
a bunch of grapes or a fig. If you tell me that you
desire a fig, I answer you that there must be time.

Let it first blossom, then bear fruit, then ripen.

- EPICTETUS, in Discourses, bk. I, ch. 15

Perhaps someday it will be pleasant to remember even this.

- VIRGIL in Aeneid, bk. I, . 203

Now is the time for drinking, now the time
to beat the earth with unfettered foot.

- HoRACE in Odes, bk. I, ode zmii, 1. 1 (23 B.C.)

124

CHAPTER 7. CONCLUSION 125

7.1 Summary

The main problem in achieving high performance floating-point is supplying the I/0 band-

width, both on and off chip, necessary to keep fast floating-point circuits and datapaths

busy. This Thesis describes and evaluates the Reconfigurable Arithmetic Processor (RAP)

architecture, which is designed to substantially reduce the bandwidth required to do high

performance floating-point.

The RAP uses three main mechanisms to reduce bandwidth: use of locality, serial arith-

metic, and a reconfigurable datapath. First, it exploits the locality inherent in mathematical

formulas by calculating complete arithmetic expressions without storing intermediate results

in memory or in register banks. This elimnaates the bandwidth costs associated with stor-

ing and retrieving intermediate results. Second, it uses serial arithmetic which allows area

efficient implementations of floating-point arithmetic. This area efficiency allows several

floating-point units to be put on a single chip and these units can be run in parallel to

achieve high performance. Third, the RAP uses the idea of a reconfigurable datapath that

permits the routing of intermediate results between functional units using a switch. The

calculation ol a mathematical expression involves sequencing the switch through different

configurations, thus routing operands and intermediate results to appropriate functional

units.

The AP is designed to fit into the J-Machine (8], a message passing multiprocessor

system. The RAP is controlled by three simple messages, which allow it to be used in this

system. These messages allow mathematical expression "programs" know as methods to

be st-ored on .thr RAP, and provide a convenient mechanism for invoking these methods

on different data inputs. A mechanism is also provided to permit the pipelining of RAPs,

forking operations, and merging operations.

Two important aspects of the RAP hardware design are investigated in this Thesis: the

design of the control logic and the design of the serial floating-point units. The controi

CHAPTER 7. CONCL USION 126

is conveniently divided into input control, switch control, output control, and network

interface control. The simple flow charts for these logic blocks can easily be implemented

using random logic or small PLAs.

Two types of serial floating-point functional units are used in the RAP, one a floating-

point adder/subtractor, the other a floating-point multiplier. The implementation of these

units is based on doing 4-bit serial arithmetic. Doing 4-bit arithmetic allows more efficient

use of the logic than 1-bit or 2-bit serial arithmetic, and can be implemented with simple

extensions of 2-bit algorithms. ID particular, the mantissa multiply portion of the floating-

point multiplier is based on Modified Booth encoding, a technique that has been used to

implement two-bit serial fixed point arithmetic [23]. The most critical circuit in these units is

the 4-bit adder used, due to the long carry delay. SPICE simulations of different 4-bit adders

indicate that it will be possible to run these units at 80MHz. The current arithmetic unit

designs have a performance of 1.57MFlops, and an improved design that allows problems to

be pipelined one immediately following the other would have a performance of 4.70MFlops.

An expression compiler is used to map mathematical expressions onto the RAP data-

path. This compiler takes as input a list of mathematical expressions that contain several

adds, subtracts, and multiplies. It then outputs a series of switch configurations that will

route operands and intermediate results to functional units that will perform the compu-

tation. This compiler uses a depth first search, trying to assign operations to functional

units, while taking into account data dependencies, the number and characteristics (i.e. the

functions each unit can perform and their latency) of the functional units available, and

the characteristics of the switch. Algorithmic and heuristic methods are used to limit and

guide the seaxch.

The performance of the RAP has been evaluated in terms of the bandwidth savings real-

ized. and in terms of the floating-point performance achieved. The RAP evaluated contains

four add/subtract units, four multiply units, and eight feedthrough units (feedthrough units

are simple delay elements used to align operands in time and space when two operands arp

CHAPTER 7. CONCLUSION 127

not ready at the same time, or cannot reach the same arithmetic unit). The expression

compiler mapped 23 benchmark expressions onto a switch that has less than half the con-

nectivity of a complete switch. Average bandwidth savings is 64% over the case where no

locality is exploited. Average floating-point performance for these problems is 3.4OMFlops,

or 11% of the 32MFlop peak rate. This corresponds to 82% of the floating-point per-

formance achievable if infinite resources were used (infinite resources corresponds to an

unlimited amount of functional units and complete switch connectivity), and 88% of the

performance achievable if a complete switch is used. These figures justify the use of an

incomplete switch.

7.2 Future Work

This Thesis deals with the full spectrum of problems encountered in the RAP design, from

the hardware implementation, to compilation and system level issues. As a result of this

broad approach, it was not possible to carry out the analysis of all the different issues to

great depth. Much further work is needed on all aspects the design.

Bit-serial implementations of floating-point arithmetic is an area of research unto itself.

Different algorithms for doing serial floating-point are possible, and a comprehensive study

of the alternatives is needed, with emphasis on achieving high performance and low latency.

In particular, the use of redundant- number representations and digit on-line algorithms [16,

29, 351 should be compared to the more conventional two's complement arithmetic approach.

An important issue that has not been dealt with in this Thesis is the serial implementation

of common floating-point operations such as divide and square root. Algorithms for these

operations in the bit-parallel world are of the compare-shift type, such as in the SRT division

algorithm, or of the iterative type where repeated multiplication is used to converge to the

result [18]. What approach is best in the bit-serial world is an interesting research issue.

Investigating new ways to improve the floating-point performance and bandwidth per-

CHAPTER 7. CONCLUSION 128

formance is an important area for further study. Currently the RAP floating-point perfor-

mance is limited principally by the parallelism present within one mathematical expression.

Finding what mechanisms are needed to allow the RAP to efficiently exploit parallelism

between- mathematical expressions is the key to increasing the floating-point performance.

Exploiting the parallelism betwefn expressions in turn raises many compiler level issues.

Exploiting local memory to further reduce bandwidth requirements is likely to lead to sig-

nificant off chip bandwidth reductions. One could envision having a RAP-like datapath on

a chip with a subsidiary register file. The RAP datapath would reduce the on chip I/O

bandwidth-so that the register file would not have to be multi-ported. At the same time, the

register Me could be used to-storeresults coming out of the datapath. This would reduce

off chip I/O since the results could be stored on chip for later use.

Finally, many system level issues renrain to:be addressed. How does one break up

problems for the RAP? How does one decide how to distribute computation over different

RAPs in a multiprocessor system like the J-Machine? Should RAP pipelining be used or

will this put too large a burden on the communication network? These problems are part

of the larger problem of resource management and utilization that must be dealt with in

all computer systems.

The idea of having several serial floating-point units on a chip connected with a switch,

represents a flexible and efficient alternative to bit parallel arithmetic and a register file. The

ideas found in this Thesis, including high performance serial floating-point implementations,

the techniques for exposing and exploiting parallelism in arithmetic computation, and the

methods for reducing I/O bandwidth, can be developed much further. As this development

occurs, the RAP and its variations will become increasingly attractive as solutions to the

problem of achieving high performance floating-point.

*

Appendix A

4-Bit Adder Simulation and

Layout

This appendix contains the SPICE models and the schematics used in the simulation of

different 4-bit adders, as well as the layout for the basic adder cells used to estimate area.

129

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 130

A.1 Simulation

The following C.'ICE transistor parameter models were used. These are taken from the

VTI 2jsm process.

.TZMP 110
*Slow MMOS, Slow PHOS models, v-Cxas process.
.MODEL lIMOS lIMOS
*LEVEL-2 VTOO .75 TOXO . 0400U NSUB=3 . 5E16
*LJw0.ISU LDO0.20U UGO VMAX5.1E4
*UCRITa . 62E5 UEXPuO. 125

*PB30.80 NEFFu4.0 DELTAlI4
*CGSO-19S.P CGDO-196.P CJ.19S.U MJsO.76
*CJSW5600.P M4JSWxO.30
*RSH38
.MODEL PHOS P140S
*LEVSL=2 VTO-0.75 TOIL*0.04QOU ISUB=6.OEI5
*XJsO.OSU LDO0.20U UD-266 VMAX=3.0E4
*UCRIToO.86E5 UEIPO0.29
*PBO0.80 NEFF*2.66 DELTAnI.0
*CGSO-190.P CGDa=19O.P CJ*25O.U NJnO.535
*CJSWs3SO.P MJSV-O.34
*RSH-110

The four adders simulated are:

I. ADDERi: Precharged Manchester carry chain.

2. ADDER2: Precharged Manchester carry chain with positive feedback puildown cir-

cuitry.

3. ADDER3: Lookahead adder using domino logic.

4. ADDER4: Ripple carry adder with optimized carry path.

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 111

m iiiMann1 _____fr

S .-.-..

a) b)

__________1 1.!!;..

LoglI

I...b go.
d)- -

Fiur A.1 SPC ltIo ifrn - des)Mnhse ar de)MnheserCar Ade it Psiie:eebckPuldw Crciryc)Crryzoaea de
d) ~ Ripl--ryAde

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 132

Figure A.1 shows the SPICE output waveforms for the four adders. For each adder

two plots are shown. The first is a plot of the carry signal at each stage, including the

final storage stage where the final carry out is latched. The second is a plot of the sum

output at each stage, as well as the output of the register in which the final bit is stored.

For reference, one of the clock signals is plotted in each case. Phase two is plotted for the

first three precharged adders, while phase one is plotted for the ripple adder. Delays were

measured from the 2.5V mark. Since the storage node of the output carry load is non-

restoring, care must be taken that the voltage reached is above the p-transistor threshold

(= 4V) for a high going voltage, and below the n-transistor threshold (= 1V) for a low

going voltage, before the falling edge of the clock.

A.2 4-bit Adder Schematics

This section contains the schematics of the 4-bit adders that were used in the simulation.

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 133

ml,

0

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUTT 134

ccJ

I I

-<)AIc

<E LOU

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 135

3 0
* C.,

0

y.

II

11*

i
I.

I!

NJ

~0j
0;

WI
0

APPENDIX A. 4-BIT ADDER SIMULATIN AN~D LAYOUT 136

Icn

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 137

IJ.
* CIn

cr

u,

FL

APPENDIX A. 4-BIT ADDER SIMWULATION AAD LAYOUT 138

Ia
li

I ______

I.
0U

W~

*APPENDIX A. 4-BI T ADDER SIMULATION AND LAYOUT 139

C,

assi

*ls

C1.1

cc0

w'

0.

APPENDIX A. 4-HITADDER SIMLTAION ANDi LAYOUT 140

CM

00

0

2

In

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 141

CL Cm

C" II

.6 alas

~0

1W

,APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 142

C4

ol

APPENDIX A. 4-BIT ADDFR SIMULATION AND LAYOUT 143

100

10

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 144

C~4

;tn

C

. APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 145

C.,

w
4-

0
4-

~_I

-a

I ~*-*------...

4 4 4 4

~ vi

~oI
2

0.

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 146

4
cc

WLuI
i

0,

. APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 147

C*4

Q

cc

Nu

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 148

a

CL

I-Q

.APPENVDLX A. 4-BIT ADDER SIMULATION AND LAYOUT 149

4.

in~

0j
&

0u

0u

~2::IC

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 150

iZ,

T T-L.

z
z

w

U)0
IC

. APPENDLX A. 4-BIT ADDER SIMULATION AND LAYOUT 151

0*-

II

O ' "

T2

O :€ ,

APPENDIX A. 4-BIT ADDER SIMULATION AND -LAYOUT 152

0

i

.APPENDLX A. 4-BIT ADDER SIMULATION AND LAYOUT 153

:0

uj:
a.:. 1 U,,

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 154

9!e4l !

C-4

'i

II

- I

0I

- ZI

. APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 155

c
CO

U,

U,

L_,

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 156

M0

tn

i4

00
4Iz

m
U)
10

.APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOU7' 157

.. c

z

0
* Oi

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 158

A.3 4-bit Adder Layout

In this section, plots of the cells used to estimate area are shown. For ADDER1, ADDER2.

and ADDER4 a single bit of the adder was layed out, whereas for ADDER3 the complete

4-bit adder is shown, due to the non-uniform nature of the circuit.

.APPENDLX A. 4-BIT ADDER SIMULATION AND LAYOUT 159

file: addert

user: stuart
Date: Tme Doe 13 09:11:38 1988

un

Rao-a

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 160

Vile: addew2
User: atuart
Date: Too Dec 13 09:11:14 1968

V44f ! U __~~

~47

Gsun-

cia

.APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 161

File: adder3
U::r: 3uf

@',,arThe 3e :1: i53 1Q88

'~PI~-coFt
...j......

.

APPENDIX A. 4-BIT ADDER SIMULATION AND LAYOUT 162

Date: Te Ot 20 21:2f:08 1M

b. 3.C

..... ... It5? 5..~

~~~~I~ii... J*T .%.:.ezA . mn:Avt.,qAx ..... . .......

C4............... .*. A -l R v.* .- . . . ..... .v

. ....0 a .... .... ........
.. .m u . ...... .... .

.. .... ..



Bibliography

(1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and Algorithms. Addison-

Wesley Publishing Company, 1983.

[2] A.D. Booth. A Signed Binary Multiplication Technique. Q. J. Mech. Appl. Math.,

4:236-240, 1951.

-[3] J.T. Coonen. An Implementation Guide to a Proposed Standard for Floating-Point

Arithmetic. Computer Magazine, 13(1):68-79, January 1980.

[4] Weitek Corporation. WTL 3164/XL-3164, WTL 3364/XL-3364, 1988. Beta Release.

[5] W.J. Dally. A high performance VLSI quaternary serial multiplier. In ICCD-87, pages

649-653, 1987.

[6] W.J. Dally and Seitz C.L. The Torus Routing Chip. Journal of Distributed Systems,

1(3):187-196, 1986.

[71 W.J. Dally et al. Architecture of a Message-Driven Processor. In Proceedings of the

14'h ACM/IEEE Symposium on Computer Architecture, pages 189-196, June 1987.

[8] W.J. Dally et al. Concurrent Computer Architecture. In Proceedings of Symposium on

Parallel Computations and Their Impact on Mechanics, 1987.

[9] W.J. Dally and Song P.Y. Design of a Self-Timed VLSI Multicomputer Communication

is Controller. In ICCD-87, pages 230-4, October 1987.

163



[10] J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. The MIT Press, 1986.

[11] S. Fiske. RAP Expression Compiler Listing. MIT Concurrent VLSI Architecture Memo

18, December 1988.

[12] S. Fiske. RAP Floating-Point Unit Schematics. MIT Concurrent VLSI Architecture

Memo 17, December 1988.

[13] M.R. Garey and Johnson D.S. Computers and Intractability: A Guide to the Theory

of NP-completeness. Freeman, 1979.

[14] Edwards D.B.J. Gosling J.B., Zurwawski J.H.P. A Chip Set for High-Speed Low Cost

Floating Point Unit. In Proceedings of the 5th Symposium on Computer Arithmetic,

pages 50-55. IEEE Computer Society Press, 1981.

[15] The Institute of Electrical and Electronic Engineers, 345 East 47th Street, New York,

NY 10017. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std

754-1985 edition, 1985.

[16] M.J. Irwin and R.M. Owens. Digit-Pipelined Arithmetic as Illustrated By the Paste-Up

System: A tutorial. Computer, pages 61-73, April 1987.

[17] H.F. Jordan. HEP Architecture, Programming and Performance. In Kowalik J.S.,

editor, Parallel MIMD Computation: HEP Supercomputer and its Applications, pages

1-40, Cambridge Massachusetts, 1985. MIT Press.

[18] Hwang K. Computer Arithmetic: Principles, Architecture, and Design. John Wiley &

Sons, 1979.

[19] D.J. Kuck.' A Survey of Parallel Machine Organization and Programming. ACM

Computing Surveys, 9(1):29-59, March 1977.

[20] D.J. Kuck, Y. Muraoka, and S Chen. On the Number of Operations Simultaneously

Executable in Fortran-Like Programs and Their Resulting Speedup. IEEE Transactions

on Computers, C-21(12):1293-1309, December 1972.

164



(21] M. Lam. Software Pipelining: An Effective Technique for VLIW Machines. In Proc.

SIGPLAN '88 Conference on Programming Language Design and Implementation,

pages 318-328, Atlanta, Georgia, June 1988.

[221 Lucid Inc., 707 Laurel Street, Menlo Park, California 94025. SUN Common LISP

User's Guide, AAAI edition, 1986.

[23] R.F. Lyon. Two's Complement Pipeline Multipliers. In IEEE Transactions on Com-

puters Vol COM-24, pages 418-425, 1976.

(24] R.F. Lyon. A Bit-Serial VLSI Architectural Methodology for Signal Processing. In

J.P. Gray, editor, VLSI'81, pages 131-140. Academic Press, 1981.

[25] R.F. Lyon. MSSP: A Bit-Serial Multiprocessor for Signal Processing. In VLSI Signal

processing: A Bit-Serial Approach. Addison-Wesley Publishing Company, 1985.

(26] W.H. McAllister and J.R. Carlson. Floating-Point Chip Set Speeds Real-Time Com-

puter Operation. Hewlett-Packard Journal, pages 17-23, February 1984.

[27] F.H. McMahon. Lawrence Livermore National Laboratory FORTRAN kernels:

MFLOPS, 1984.

[28] A.V. Oppenheim and R.W. Schafer. Digital Signal Processing. Prentice-Hall Inc.,

Englewood Cliffs, New Jersey, 1975.

[291 R.M. Owens. Compound Algorithms for Digit On-line Arithmetic. In 5th Symposium

on Computer Arithmetic, pages 64-71, Ann Arbor, MI, May 1981.

(30] Denyer P. and Renshaw W. VLSI Signal Processing: A Bit-Serial Approach. Addison-

Wesley Publishing Company, 1985.

[31] L.W. Rabiner and B. Gold. Theory and Applications of Digital Signal Processing.

Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

* (32] K. Rauch. Math Chips: how they work. IEEE Spectrum, pages 25-30. July 1987.

165



p"

[33] R. Sedgewick. Algorithms. Addison-Wesley Publishing Company, 1984.

[34] B. Smith. The Architecture of HEP. In Kowalik J.S., editor, Parallel MIMD Com-

putation: HEP Supercomputer and its Applications, pages 41-55, Cambridge Mas-

sachusetts, 1985. MIT Press.

[35] K.S. Trivedi and M.D. Ercegovac. On-line Algorithms for Division and Multiplication.

IEEE Transactions on Computers, C-26(7):681-687, July 1977.

(36] N. Weste and K. Eshraghian. Principles of CMOS VLSI Design, A Systems Perspective.

Addison-Wesley Publishing Company, 1985.

[37] P.H. Winston. Artificial Intelligence. Addison-Wesley, Massachusetts, 1985.

166 -


